blob: 961de15c27a516dd9902981263f1f826c89102f6 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "media/engine/simulcast_encoder_adapter.h"
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cstdint>
#include <string>
#include <utility>
#include "api/scoped_refptr.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_frame_buffer.h"
#include "api/video/video_rotation.h"
#include "api/video_codecs/video_encoder.h"
#include "api/video_codecs/video_encoder_factory.h"
#include "api/video_codecs/video_encoder_software_fallback_wrapper.h"
#include "media/base/video_common.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
namespace {
const unsigned int kDefaultMinQp = 2;
const unsigned int kDefaultMaxQp = 56;
// Max qp for lowest spatial resolution when doing simulcast.
const unsigned int kLowestResMaxQp = 45;
absl::optional<unsigned int> GetScreenshareBoostedQpValue() {
std::string experiment_group =
webrtc::field_trial::FindFullName("WebRTC-BoostedScreenshareQp");
unsigned int qp;
if (sscanf(experiment_group.c_str(), "%u", &qp) != 1)
return absl::nullopt;
qp = std::min(qp, 63u);
qp = std::max(qp, 1u);
return qp;
}
uint32_t SumStreamMaxBitrate(int streams, const webrtc::VideoCodec& codec) {
uint32_t bitrate_sum = 0;
for (int i = 0; i < streams; ++i) {
bitrate_sum += codec.simulcastStream[i].maxBitrate;
}
return bitrate_sum;
}
int NumberOfStreams(const webrtc::VideoCodec& codec) {
int streams =
codec.numberOfSimulcastStreams < 1 ? 1 : codec.numberOfSimulcastStreams;
uint32_t simulcast_max_bitrate = SumStreamMaxBitrate(streams, codec);
if (simulcast_max_bitrate == 0) {
streams = 1;
}
return streams;
}
int NumActiveStreams(const webrtc::VideoCodec& codec) {
int num_configured_streams = NumberOfStreams(codec);
int num_active_streams = 0;
for (int i = 0; i < num_configured_streams; ++i) {
if (codec.simulcastStream[i].active) {
++num_active_streams;
}
}
return num_active_streams;
}
int VerifyCodec(const webrtc::VideoCodec* inst) {
if (inst == nullptr) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width <= 1 || inst->height <= 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->codecType == webrtc::kVideoCodecVP8 &&
inst->VP8().automaticResizeOn && NumActiveStreams(*inst) > 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
return WEBRTC_VIDEO_CODEC_OK;
}
bool StreamResolutionCompare(const webrtc::SpatialLayer& a,
const webrtc::SpatialLayer& b) {
return std::tie(a.height, a.width, a.maxBitrate, a.maxFramerate) <
std::tie(b.height, b.width, b.maxBitrate, b.maxFramerate);
}
// An EncodedImageCallback implementation that forwards on calls to a
// SimulcastEncoderAdapter, but with the stream index it's registered with as
// the first parameter to Encoded.
class AdapterEncodedImageCallback : public webrtc::EncodedImageCallback {
public:
AdapterEncodedImageCallback(webrtc::SimulcastEncoderAdapter* adapter,
size_t stream_idx)
: adapter_(adapter), stream_idx_(stream_idx) {}
EncodedImageCallback::Result OnEncodedImage(
const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo* codec_specific_info) override {
return adapter_->OnEncodedImage(stream_idx_, encoded_image,
codec_specific_info);
}
private:
webrtc::SimulcastEncoderAdapter* const adapter_;
const size_t stream_idx_;
};
} // namespace
namespace webrtc {
SimulcastEncoderAdapter::SimulcastEncoderAdapter(VideoEncoderFactory* factory,
const SdpVideoFormat& format)
: SimulcastEncoderAdapter(factory, nullptr, format) {}
SimulcastEncoderAdapter::SimulcastEncoderAdapter(
VideoEncoderFactory* primary_factory,
VideoEncoderFactory* fallback_factory,
const SdpVideoFormat& format)
: inited_(0),
primary_encoder_factory_(primary_factory),
fallback_encoder_factory_(fallback_factory),
video_format_(format),
encoded_complete_callback_(nullptr),
experimental_boosted_screenshare_qp_(GetScreenshareBoostedQpValue()),
boost_base_layer_quality_(RateControlSettings::ParseFromFieldTrials()
.Vp8BoostBaseLayerQuality()),
prefer_temporal_support_on_base_layer_(field_trial::IsEnabled(
"WebRTC-Video-PreferTemporalSupportOnBaseLayer")) {
RTC_DCHECK(primary_factory);
// The adapter is typically created on the worker thread, but operated on
// the encoder task queue.
encoder_queue_.Detach();
memset(&codec_, 0, sizeof(webrtc::VideoCodec));
}
SimulcastEncoderAdapter::~SimulcastEncoderAdapter() {
RTC_DCHECK(!Initialized());
DestroyStoredEncoders();
}
void SimulcastEncoderAdapter::SetFecControllerOverride(
FecControllerOverride* fec_controller_override) {
// Ignored.
}
int SimulcastEncoderAdapter::Release() {
RTC_DCHECK_RUN_ON(&encoder_queue_);
while (!streaminfos_.empty()) {
std::unique_ptr<VideoEncoder> encoder =
std::move(streaminfos_.back().encoder);
// Even though it seems very unlikely, there are no guarantees that the
// encoder will not call back after being Release()'d. Therefore, we first
// disable the callbacks here.
encoder->RegisterEncodeCompleteCallback(nullptr);
encoder->Release();
streaminfos_.pop_back(); // Deletes callback adapter.
stored_encoders_.push(std::move(encoder));
}
// It's legal to move the encoder to another queue now.
encoder_queue_.Detach();
rtc::AtomicOps::ReleaseStore(&inited_, 0);
return WEBRTC_VIDEO_CODEC_OK;
}
// TODO(eladalon): s/inst/codec_settings/g.
int SimulcastEncoderAdapter::InitEncode(
const VideoCodec* inst,
const VideoEncoder::Settings& settings) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (settings.number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int ret = VerifyCodec(inst);
if (ret < 0) {
return ret;
}
ret = Release();
if (ret < 0) {
return ret;
}
int number_of_streams = NumberOfStreams(*inst);
RTC_DCHECK_LE(number_of_streams, kMaxSimulcastStreams);
bool doing_simulcast_using_adapter = (number_of_streams > 1);
int num_active_streams = NumActiveStreams(*inst);
codec_ = *inst;
SimulcastRateAllocator rate_allocator(codec_);
VideoBitrateAllocation allocation =
rate_allocator.Allocate(VideoBitrateAllocationParameters(
codec_.startBitrate * 1000, codec_.maxFramerate));
std::vector<uint32_t> start_bitrates;
for (int i = 0; i < kMaxSimulcastStreams; ++i) {
uint32_t stream_bitrate = allocation.GetSpatialLayerSum(i) / 1000;
start_bitrates.push_back(stream_bitrate);
}
// Create |number_of_streams| of encoder instances and init them.
const auto minmax = std::minmax_element(
std::begin(codec_.simulcastStream),
std::begin(codec_.simulcastStream) + number_of_streams,
StreamResolutionCompare);
const auto lowest_resolution_stream_index =
std::distance(std::begin(codec_.simulcastStream), minmax.first);
const auto highest_resolution_stream_index =
std::distance(std::begin(codec_.simulcastStream), minmax.second);
RTC_DCHECK_LT(lowest_resolution_stream_index, number_of_streams);
RTC_DCHECK_LT(highest_resolution_stream_index, number_of_streams);
const SdpVideoFormat format(
codec_.codecType == webrtc::kVideoCodecVP8 ? "VP8" : "H264",
video_format_.parameters);
for (int i = 0; i < number_of_streams; ++i) {
// If an existing encoder instance exists, reuse it.
// TODO(brandtr): Set initial RTP state (e.g., picture_id/tl0_pic_idx) here,
// when we start storing that state outside the encoder wrappers.
std::unique_ptr<VideoEncoder> encoder;
if (!stored_encoders_.empty()) {
encoder = std::move(stored_encoders_.top());
stored_encoders_.pop();
} else {
encoder = primary_encoder_factory_->CreateVideoEncoder(format);
if (fallback_encoder_factory_ != nullptr) {
encoder = CreateVideoEncoderSoftwareFallbackWrapper(
fallback_encoder_factory_->CreateVideoEncoder(format),
std::move(encoder),
i == lowest_resolution_stream_index &&
prefer_temporal_support_on_base_layer_);
}
}
bool encoder_initialized = false;
if (doing_simulcast_using_adapter && i == 0 &&
encoder->GetEncoderInfo().supports_simulcast) {
ret = encoder->InitEncode(&codec_, settings);
if (ret < 0) {
encoder->Release();
} else {
doing_simulcast_using_adapter = false;
number_of_streams = 1;
encoder_initialized = true;
}
}
VideoCodec stream_codec;
uint32_t start_bitrate_kbps = start_bitrates[i];
const bool send_stream = doing_simulcast_using_adapter
? start_bitrate_kbps > 0
: num_active_streams > 0;
if (!doing_simulcast_using_adapter) {
stream_codec = codec_;
stream_codec.numberOfSimulcastStreams =
std::max<uint8_t>(1, stream_codec.numberOfSimulcastStreams);
} else {
// Cap start bitrate to the min bitrate in order to avoid strange codec
// behavior. Since sending will be false, this should not matter.
StreamResolution stream_resolution =
i == highest_resolution_stream_index
? StreamResolution::HIGHEST
: i == lowest_resolution_stream_index ? StreamResolution::LOWEST
: StreamResolution::OTHER;
start_bitrate_kbps =
std::max(codec_.simulcastStream[i].minBitrate, start_bitrate_kbps);
PopulateStreamCodec(codec_, i, start_bitrate_kbps, stream_resolution,
&stream_codec);
}
// TODO(ronghuawu): Remove once this is handled in LibvpxVp8Encoder.
if (stream_codec.qpMax < kDefaultMinQp) {
stream_codec.qpMax = kDefaultMaxQp;
}
if (!encoder_initialized) {
ret = encoder->InitEncode(&stream_codec, settings);
if (ret < 0) {
// Explicitly destroy the current encoder; because we haven't registered
// a StreamInfo for it yet, Release won't do anything about it.
encoder.reset();
Release();
return ret;
}
}
if (!doing_simulcast_using_adapter) {
// Without simulcast, just pass through the encoder info from the one
// active encoder.
encoder->RegisterEncodeCompleteCallback(encoded_complete_callback_);
streaminfos_.emplace_back(
std::move(encoder), nullptr,
std::make_unique<FramerateController>(stream_codec.maxFramerate),
stream_codec.width, stream_codec.height, send_stream);
} else {
std::unique_ptr<EncodedImageCallback> callback(
new AdapterEncodedImageCallback(this, i));
encoder->RegisterEncodeCompleteCallback(callback.get());
streaminfos_.emplace_back(
std::move(encoder), std::move(callback),
std::make_unique<FramerateController>(stream_codec.maxFramerate),
stream_codec.width, stream_codec.height, send_stream);
}
}
// To save memory, don't store encoders that we don't use.
DestroyStoredEncoders();
rtc::AtomicOps::ReleaseStore(&inited_, 1);
return WEBRTC_VIDEO_CODEC_OK;
}
int SimulcastEncoderAdapter::Encode(
const VideoFrame& input_image,
const std::vector<VideoFrameType>* frame_types) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (!Initialized()) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (encoded_complete_callback_ == nullptr) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
// All active streams should generate a key frame if
// a key frame is requested by any stream.
bool send_key_frame = false;
if (frame_types) {
for (size_t i = 0; i < frame_types->size(); ++i) {
if (frame_types->at(i) == VideoFrameType::kVideoFrameKey) {
send_key_frame = true;
break;
}
}
}
for (size_t stream_idx = 0; stream_idx < streaminfos_.size(); ++stream_idx) {
if (streaminfos_[stream_idx].key_frame_request &&
streaminfos_[stream_idx].send_stream) {
send_key_frame = true;
break;
}
}
// Temporary thay may hold the result of texture to i420 buffer conversion.
rtc::scoped_refptr<VideoFrameBuffer> src_buffer;
int src_width = input_image.width();
int src_height = input_image.height();
for (size_t stream_idx = 0; stream_idx < streaminfos_.size(); ++stream_idx) {
// Don't encode frames in resolutions that we don't intend to send.
if (!streaminfos_[stream_idx].send_stream) {
continue;
}
const uint32_t frame_timestamp_ms =
1000 * input_image.timestamp() / 90000; // kVideoPayloadTypeFrequency;
// If adapter is passed through and only one sw encoder does simulcast,
// frame types for all streams should be passed to the encoder unchanged.
// Otherwise a single per-encoder frame type is passed.
std::vector<VideoFrameType> stream_frame_types(
streaminfos_.size() == 1 ? NumberOfStreams(codec_) : 1);
if (send_key_frame) {
std::fill(stream_frame_types.begin(), stream_frame_types.end(),
VideoFrameType::kVideoFrameKey);
streaminfos_[stream_idx].key_frame_request = false;
} else {
if (streaminfos_[stream_idx].framerate_controller->DropFrame(
frame_timestamp_ms)) {
continue;
}
std::fill(stream_frame_types.begin(), stream_frame_types.end(),
VideoFrameType::kVideoFrameDelta);
}
streaminfos_[stream_idx].framerate_controller->AddFrame(frame_timestamp_ms);
int dst_width = streaminfos_[stream_idx].width;
int dst_height = streaminfos_[stream_idx].height;
// If scaling isn't required, because the input resolution
// matches the destination or the input image is empty (e.g.
// a keyframe request for encoders with internal camera
// sources) or the source image has a native handle, pass the image on
// directly. Otherwise, we'll scale it to match what the encoder expects
// (below).
// For texture frames, the underlying encoder is expected to be able to
// correctly sample/scale the source texture.
// TODO(perkj): ensure that works going forward, and figure out how this
// affects webrtc:5683.
if ((dst_width == src_width && dst_height == src_height) ||
(input_image.video_frame_buffer()->type() ==
VideoFrameBuffer::Type::kNative &&
streaminfos_[stream_idx]
.encoder->GetEncoderInfo()
.supports_native_handle)) {
int ret = streaminfos_[stream_idx].encoder->Encode(input_image,
&stream_frame_types);
if (ret != WEBRTC_VIDEO_CODEC_OK) {
return ret;
}
} else {
if (src_buffer == nullptr) {
src_buffer = input_image.video_frame_buffer();
}
rtc::scoped_refptr<VideoFrameBuffer> dst_buffer =
src_buffer->Scale(dst_width, dst_height);
if (!dst_buffer) {
RTC_LOG(LS_ERROR) << "Failed to scale video frame";
return WEBRTC_VIDEO_CODEC_ENCODER_FAILURE;
}
// UpdateRect is not propagated to lower simulcast layers currently.
// TODO(ilnik): Consider scaling UpdateRect together with the buffer.
VideoFrame frame(input_image);
frame.set_video_frame_buffer(dst_buffer);
frame.set_rotation(webrtc::kVideoRotation_0);
frame.set_update_rect(
VideoFrame::UpdateRect{0, 0, frame.width(), frame.height()});
int ret =
streaminfos_[stream_idx].encoder->Encode(frame, &stream_frame_types);
if (ret != WEBRTC_VIDEO_CODEC_OK) {
return ret;
}
}
}
return WEBRTC_VIDEO_CODEC_OK;
}
int SimulcastEncoderAdapter::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
encoded_complete_callback_ = callback;
if (streaminfos_.size() == 1) {
streaminfos_[0].encoder->RegisterEncodeCompleteCallback(callback);
}
return WEBRTC_VIDEO_CODEC_OK;
}
void SimulcastEncoderAdapter::SetRates(
const RateControlParameters& parameters) {
RTC_DCHECK_RUN_ON(&encoder_queue_);
if (!Initialized()) {
RTC_LOG(LS_WARNING) << "SetRates while not initialized";
return;
}
if (parameters.framerate_fps < 1.0) {
RTC_LOG(LS_WARNING) << "Invalid framerate: " << parameters.framerate_fps;
return;
}
codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps + 0.5);
if (streaminfos_.size() == 1) {
// Not doing simulcast.
streaminfos_[0].encoder->SetRates(parameters);
return;
}
for (size_t stream_idx = 0; stream_idx < streaminfos_.size(); ++stream_idx) {
uint32_t stream_bitrate_kbps =
parameters.bitrate.GetSpatialLayerSum(stream_idx) / 1000;
// Need a key frame if we have not sent this stream before.
if (stream_bitrate_kbps > 0 && !streaminfos_[stream_idx].send_stream) {
streaminfos_[stream_idx].key_frame_request = true;
}
streaminfos_[stream_idx].send_stream = stream_bitrate_kbps > 0;
// Slice the temporal layers out of the full allocation and pass it on to
// the encoder handling the current simulcast stream.
RateControlParameters stream_parameters = parameters;
stream_parameters.bitrate = VideoBitrateAllocation();
for (int i = 0; i < kMaxTemporalStreams; ++i) {
if (parameters.bitrate.HasBitrate(stream_idx, i)) {
stream_parameters.bitrate.SetBitrate(
0, i, parameters.bitrate.GetBitrate(stream_idx, i));
}
}
// Assign link allocation proportionally to spatial layer allocation.
if (!parameters.bandwidth_allocation.IsZero() &&
parameters.bitrate.get_sum_bps() > 0) {
stream_parameters.bandwidth_allocation =
DataRate::BitsPerSec((parameters.bandwidth_allocation.bps() *
stream_parameters.bitrate.get_sum_bps()) /
parameters.bitrate.get_sum_bps());
// Make sure we don't allocate bandwidth lower than target bitrate.
if (stream_parameters.bandwidth_allocation.bps() <
stream_parameters.bitrate.get_sum_bps()) {
stream_parameters.bandwidth_allocation =
DataRate::BitsPerSec(stream_parameters.bitrate.get_sum_bps());
}
}
stream_parameters.framerate_fps = std::min<double>(
parameters.framerate_fps,
streaminfos_[stream_idx].framerate_controller->GetTargetRate());
streaminfos_[stream_idx].encoder->SetRates(stream_parameters);
}
}
void SimulcastEncoderAdapter::OnPacketLossRateUpdate(float packet_loss_rate) {
for (StreamInfo& info : streaminfos_) {
info.encoder->OnPacketLossRateUpdate(packet_loss_rate);
}
}
void SimulcastEncoderAdapter::OnRttUpdate(int64_t rtt_ms) {
for (StreamInfo& info : streaminfos_) {
info.encoder->OnRttUpdate(rtt_ms);
}
}
void SimulcastEncoderAdapter::OnLossNotification(
const LossNotification& loss_notification) {
for (StreamInfo& info : streaminfos_) {
info.encoder->OnLossNotification(loss_notification);
}
}
// TODO(brandtr): Add task checker to this member function, when all encoder
// callbacks are coming in on the encoder queue.
EncodedImageCallback::Result SimulcastEncoderAdapter::OnEncodedImage(
size_t stream_idx,
const EncodedImage& encodedImage,
const CodecSpecificInfo* codecSpecificInfo) {
EncodedImage stream_image(encodedImage);
CodecSpecificInfo stream_codec_specific = *codecSpecificInfo;
stream_image.SetSpatialIndex(stream_idx);
return encoded_complete_callback_->OnEncodedImage(stream_image,
&stream_codec_specific);
}
void SimulcastEncoderAdapter::PopulateStreamCodec(
const webrtc::VideoCodec& inst,
int stream_index,
uint32_t start_bitrate_kbps,
StreamResolution stream_resolution,
webrtc::VideoCodec* stream_codec) {
*stream_codec = inst;
// Stream specific settings.
stream_codec->numberOfSimulcastStreams = 0;
stream_codec->width = inst.simulcastStream[stream_index].width;
stream_codec->height = inst.simulcastStream[stream_index].height;
stream_codec->maxBitrate = inst.simulcastStream[stream_index].maxBitrate;
stream_codec->minBitrate = inst.simulcastStream[stream_index].minBitrate;
stream_codec->maxFramerate = inst.simulcastStream[stream_index].maxFramerate;
stream_codec->qpMax = inst.simulcastStream[stream_index].qpMax;
stream_codec->active = inst.simulcastStream[stream_index].active;
// Settings that are based on stream/resolution.
if (stream_resolution == StreamResolution::LOWEST) {
// Settings for lowest spatial resolutions.
if (inst.mode == VideoCodecMode::kScreensharing) {
if (experimental_boosted_screenshare_qp_) {
stream_codec->qpMax = *experimental_boosted_screenshare_qp_;
}
} else if (boost_base_layer_quality_) {
stream_codec->qpMax = kLowestResMaxQp;
}
}
if (inst.codecType == webrtc::kVideoCodecVP8) {
stream_codec->VP8()->numberOfTemporalLayers =
inst.simulcastStream[stream_index].numberOfTemporalLayers;
if (stream_resolution != StreamResolution::HIGHEST) {
// For resolutions below CIF, set the codec |complexity| parameter to
// kComplexityHigher, which maps to cpu_used = -4.
int pixels_per_frame = stream_codec->width * stream_codec->height;
if (pixels_per_frame < 352 * 288) {
stream_codec->VP8()->complexity =
webrtc::VideoCodecComplexity::kComplexityHigher;
}
// Turn off denoising for all streams but the highest resolution.
stream_codec->VP8()->denoisingOn = false;
}
} else if (inst.codecType == webrtc::kVideoCodecH264) {
stream_codec->H264()->numberOfTemporalLayers =
inst.simulcastStream[stream_index].numberOfTemporalLayers;
}
// TODO(ronghuawu): what to do with targetBitrate.
stream_codec->startBitrate = start_bitrate_kbps;
// Legacy screenshare mode is only enabled for the first simulcast layer
stream_codec->legacy_conference_mode =
inst.legacy_conference_mode && stream_index == 0;
}
bool SimulcastEncoderAdapter::Initialized() const {
return rtc::AtomicOps::AcquireLoad(&inited_) == 1;
}
void SimulcastEncoderAdapter::DestroyStoredEncoders() {
while (!stored_encoders_.empty()) {
stored_encoders_.pop();
}
}
VideoEncoder::EncoderInfo SimulcastEncoderAdapter::GetEncoderInfo() const {
if (streaminfos_.size() == 1) {
// Not using simulcast adapting functionality, just pass through.
return streaminfos_[0].encoder->GetEncoderInfo();
}
VideoEncoder::EncoderInfo encoder_info;
encoder_info.implementation_name = "SimulcastEncoderAdapter";
encoder_info.requested_resolution_alignment = 1;
encoder_info.apply_alignment_to_all_simulcast_layers = false;
encoder_info.supports_native_handle = true;
encoder_info.scaling_settings.thresholds = absl::nullopt;
if (streaminfos_.empty()) {
return encoder_info;
}
encoder_info.scaling_settings = VideoEncoder::ScalingSettings::kOff;
int num_active_streams = NumActiveStreams(codec_);
for (size_t i = 0; i < streaminfos_.size(); ++i) {
VideoEncoder::EncoderInfo encoder_impl_info =
streaminfos_[i].encoder->GetEncoderInfo();
if (i == 0) {
// Encoder name indicates names of all sub-encoders.
encoder_info.implementation_name += " (";
encoder_info.implementation_name += encoder_impl_info.implementation_name;
encoder_info.supports_native_handle =
encoder_impl_info.supports_native_handle;
encoder_info.has_trusted_rate_controller =
encoder_impl_info.has_trusted_rate_controller;
encoder_info.is_hardware_accelerated =
encoder_impl_info.is_hardware_accelerated;
encoder_info.has_internal_source = encoder_impl_info.has_internal_source;
} else {
encoder_info.implementation_name += ", ";
encoder_info.implementation_name += encoder_impl_info.implementation_name;
// Native handle supported if any encoder supports it.
encoder_info.supports_native_handle |=
encoder_impl_info.supports_native_handle;
// Trusted rate controller only if all encoders have it.
encoder_info.has_trusted_rate_controller &=
encoder_impl_info.has_trusted_rate_controller;
// Uses hardware support if any of the encoders uses it.
// For example, if we are having issues with down-scaling due to
// pipelining delay in HW encoders we need higher encoder usage
// thresholds in CPU adaptation.
encoder_info.is_hardware_accelerated |=
encoder_impl_info.is_hardware_accelerated;
// Has internal source only if all encoders have it.
encoder_info.has_internal_source &= encoder_impl_info.has_internal_source;
}
encoder_info.fps_allocation[i] = encoder_impl_info.fps_allocation[0];
encoder_info.requested_resolution_alignment = cricket::LeastCommonMultiple(
encoder_info.requested_resolution_alignment,
encoder_impl_info.requested_resolution_alignment);
if (encoder_impl_info.apply_alignment_to_all_simulcast_layers) {
encoder_info.apply_alignment_to_all_simulcast_layers = true;
}
if (num_active_streams == 1 && codec_.simulcastStream[i].active) {
encoder_info.scaling_settings = encoder_impl_info.scaling_settings;
}
}
encoder_info.implementation_name += ")";
return encoder_info;
}
} // namespace webrtc