blob: 6b10d33a5b3c2896b04e984189103b5d9b9a96d1 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/delay_manager.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <memory>
#include <numeric>
#include <string>
#include "modules/audio_coding/neteq/histogram.h"
#include "modules/include/module_common_types_public.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
constexpr int kMinBaseMinimumDelayMs = 0;
constexpr int kMaxBaseMinimumDelayMs = 10000;
constexpr int kMaxHistoryMs = 2000; // Oldest packet to include in history to
// calculate relative packet arrival delay.
constexpr int kDelayBuckets = 100;
constexpr int kBucketSizeMs = 20;
constexpr int kStartDelayMs = 80;
constexpr int kMaxNumReorderedPackets = 5;
int PercentileToQuantile(double percentile) {
return static_cast<int>((1 << 30) * percentile / 100.0 + 0.5);
}
struct DelayHistogramConfig {
int quantile = 1041529569; // 0.97 in Q30.
int forget_factor = 32745; // 0.9993 in Q15.
absl::optional<double> start_forget_weight = 2;
};
// TODO(jakobi): Remove legacy field trial.
DelayHistogramConfig GetDelayHistogramConfig() {
constexpr char kDelayHistogramFieldTrial[] =
"WebRTC-Audio-NetEqDelayHistogram";
DelayHistogramConfig config;
if (webrtc::field_trial::IsEnabled(kDelayHistogramFieldTrial)) {
const auto field_trial_string =
webrtc::field_trial::FindFullName(kDelayHistogramFieldTrial);
double percentile = -1.0;
double forget_factor = -1.0;
double start_forget_weight = -1.0;
if (sscanf(field_trial_string.c_str(), "Enabled-%lf-%lf-%lf", &percentile,
&forget_factor, &start_forget_weight) >= 2 &&
percentile >= 0.0 && percentile <= 100.0 && forget_factor >= 0.0 &&
forget_factor <= 1.0) {
config.quantile = PercentileToQuantile(percentile);
config.forget_factor = (1 << 15) * forget_factor;
config.start_forget_weight =
start_forget_weight >= 1 ? absl::make_optional(start_forget_weight)
: absl::nullopt;
}
}
RTC_LOG(LS_INFO) << "Delay histogram config:"
" quantile="
<< config.quantile
<< " forget_factor=" << config.forget_factor
<< " start_forget_weight="
<< config.start_forget_weight.value_or(0);
return config;
}
} // namespace
DelayManager::DelayManager(int max_packets_in_buffer,
int base_minimum_delay_ms,
int histogram_quantile,
const TickTimer* tick_timer,
std::unique_ptr<Histogram> histogram)
: first_packet_received_(false),
max_packets_in_buffer_(max_packets_in_buffer),
histogram_(std::move(histogram)),
histogram_quantile_(histogram_quantile),
tick_timer_(tick_timer),
base_minimum_delay_ms_(base_minimum_delay_ms),
effective_minimum_delay_ms_(base_minimum_delay_ms),
minimum_delay_ms_(0),
maximum_delay_ms_(0),
target_level_ms_(kStartDelayMs),
last_timestamp_(0) {
RTC_CHECK(histogram_);
RTC_DCHECK_GE(base_minimum_delay_ms_, 0);
Reset();
}
std::unique_ptr<DelayManager> DelayManager::Create(
int max_packets_in_buffer,
int base_minimum_delay_ms,
const TickTimer* tick_timer) {
auto config = GetDelayHistogramConfig();
std::unique_ptr<Histogram> histogram = std::make_unique<Histogram>(
kDelayBuckets, config.forget_factor, config.start_forget_weight);
return std::make_unique<DelayManager>(max_packets_in_buffer,
base_minimum_delay_ms, config.quantile,
tick_timer, std::move(histogram));
}
DelayManager::~DelayManager() {}
absl::optional<int> DelayManager::Update(uint32_t timestamp,
int sample_rate_hz,
bool reset) {
if (sample_rate_hz <= 0) {
return absl::nullopt;
}
if (!first_packet_received_ || reset) {
// Restart relative delay esimation from this packet.
delay_history_.clear();
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
last_timestamp_ = timestamp;
first_packet_received_ = true;
num_reordered_packets_ = 0;
return absl::nullopt;
}
const int expected_iat_ms =
1000 * static_cast<int32_t>(timestamp - last_timestamp_) / sample_rate_hz;
const int iat_ms = packet_iat_stopwatch_->ElapsedMs();
const int iat_delay_ms = iat_ms - expected_iat_ms;
absl::optional<int> relative_delay;
bool reordered = !IsNewerTimestamp(timestamp, last_timestamp_);
if (reordered) {
relative_delay = std::max(iat_delay_ms, 0);
} else {
UpdateDelayHistory(iat_delay_ms, timestamp, sample_rate_hz);
relative_delay = CalculateRelativePacketArrivalDelay();
}
const int index = relative_delay.value() / kBucketSizeMs;
if (index < histogram_->NumBuckets()) {
// Maximum delay to register is 2000 ms.
histogram_->Add(index);
}
// Calculate new |target_level_ms_| based on updated statistics.
int bucket_index = histogram_->Quantile(histogram_quantile_);
target_level_ms_ = (1 + bucket_index) * kBucketSizeMs;
target_level_ms_ = std::max(target_level_ms_, effective_minimum_delay_ms_);
if (maximum_delay_ms_ > 0) {
target_level_ms_ = std::min(target_level_ms_, maximum_delay_ms_);
}
if (packet_len_ms_ > 0) {
// Target level should be at least one packet.
target_level_ms_ = std::max(target_level_ms_, packet_len_ms_);
// Limit to 75% of maximum buffer size.
target_level_ms_ = std::min(
target_level_ms_, 3 * max_packets_in_buffer_ * packet_len_ms_ / 4);
}
// Prepare for next packet arrival.
if (reordered) {
// Allow a small number of reordered packets before resetting the delay
// estimation.
if (num_reordered_packets_ < kMaxNumReorderedPackets) {
++num_reordered_packets_;
return relative_delay;
}
delay_history_.clear();
}
num_reordered_packets_ = 0;
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
last_timestamp_ = timestamp;
return relative_delay;
}
void DelayManager::UpdateDelayHistory(int iat_delay_ms,
uint32_t timestamp,
int sample_rate_hz) {
PacketDelay delay;
delay.iat_delay_ms = iat_delay_ms;
delay.timestamp = timestamp;
delay_history_.push_back(delay);
while (timestamp - delay_history_.front().timestamp >
static_cast<uint32_t>(kMaxHistoryMs * sample_rate_hz / 1000)) {
delay_history_.pop_front();
}
}
int DelayManager::CalculateRelativePacketArrivalDelay() const {
// This effectively calculates arrival delay of a packet relative to the
// packet preceding the history window. If the arrival delay ever becomes
// smaller than zero, it means the reference packet is invalid, and we
// move the reference.
int relative_delay = 0;
for (const PacketDelay& delay : delay_history_) {
relative_delay += delay.iat_delay_ms;
relative_delay = std::max(relative_delay, 0);
}
return relative_delay;
}
int DelayManager::SetPacketAudioLength(int length_ms) {
if (length_ms <= 0) {
RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms;
return -1;
}
packet_len_ms_ = length_ms;
return 0;
}
void DelayManager::Reset() {
packet_len_ms_ = 0;
histogram_->Reset();
delay_history_.clear();
target_level_ms_ = kStartDelayMs;
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
first_packet_received_ = false;
num_reordered_packets_ = 0;
}
int DelayManager::TargetDelayMs() const {
return target_level_ms_;
}
bool DelayManager::IsValidMinimumDelay(int delay_ms) const {
return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound();
}
bool DelayManager::IsValidBaseMinimumDelay(int delay_ms) const {
return kMinBaseMinimumDelayMs <= delay_ms &&
delay_ms <= kMaxBaseMinimumDelayMs;
}
bool DelayManager::SetMinimumDelay(int delay_ms) {
if (!IsValidMinimumDelay(delay_ms)) {
return false;
}
minimum_delay_ms_ = delay_ms;
UpdateEffectiveMinimumDelay();
return true;
}
bool DelayManager::SetMaximumDelay(int delay_ms) {
// If |delay_ms| is zero then it unsets the maximum delay and target level is
// unconstrained by maximum delay.
if (delay_ms != 0 &&
(delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_)) {
// Maximum delay shouldn't be less than minimum delay or less than a packet.
return false;
}
maximum_delay_ms_ = delay_ms;
UpdateEffectiveMinimumDelay();
return true;
}
bool DelayManager::SetBaseMinimumDelay(int delay_ms) {
if (!IsValidBaseMinimumDelay(delay_ms)) {
return false;
}
base_minimum_delay_ms_ = delay_ms;
UpdateEffectiveMinimumDelay();
return true;
}
int DelayManager::GetBaseMinimumDelay() const {
return base_minimum_delay_ms_;
}
void DelayManager::UpdateEffectiveMinimumDelay() {
// Clamp |base_minimum_delay_ms_| into the range which can be effectively
// used.
const int base_minimum_delay_ms =
rtc::SafeClamp(base_minimum_delay_ms_, 0, MinimumDelayUpperBound());
effective_minimum_delay_ms_ =
std::max(minimum_delay_ms_, base_minimum_delay_ms);
}
int DelayManager::MinimumDelayUpperBound() const {
// Choose the lowest possible bound discarding 0 cases which mean the value
// is not set and unconstrained.
int q75 = max_packets_in_buffer_ * packet_len_ms_ * 3 / 4;
q75 = q75 > 0 ? q75 : kMaxBaseMinimumDelayMs;
const int maximum_delay_ms =
maximum_delay_ms_ > 0 ? maximum_delay_ms_ : kMaxBaseMinimumDelayMs;
return std::min(maximum_delay_ms, q75);
}
} // namespace webrtc