blob: dae285526ec93d45f5fda3ba7a9ad012d14a07a9 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/rtc_tools/event_log_visualizer/plot_python.h"
#include <stdio.h>
#include <memory>
#include "webrtc/rtc_base/checks.h"
namespace webrtc {
namespace plotting {
PythonPlot::PythonPlot() {}
PythonPlot::~PythonPlot() {}
void PythonPlot::Draw() {
// Write python commands to stdout. Intended program usage is
// ./event_log_visualizer event_log160330.dump | python
if (!series_list_.empty()) {
printf("color_count = %zu\n", series_list_.size());
printf(
"hls_colors = [(i*1.0/color_count, 0.25+i*0.5/color_count, 0.8) for i "
"in range(color_count)]\n");
printf("rgb_colors = [colorsys.hls_to_rgb(*hls) for hls in hls_colors]\n");
for (size_t i = 0; i < series_list_.size(); i++) {
printf("\n# === Series: %s ===\n", series_list_[i].label.c_str());
// List x coordinates
printf("x%zu = [", i);
if (series_list_[i].points.size() > 0)
printf("%G", series_list_[i].points[0].x);
for (size_t j = 1; j < series_list_[i].points.size(); j++)
printf(", %G", series_list_[i].points[j].x);
printf("]\n");
// List y coordinates
printf("y%zu = [", i);
if (series_list_[i].points.size() > 0)
printf("%G", series_list_[i].points[0].y);
for (size_t j = 1; j < series_list_[i].points.size(); j++)
printf(", %G", series_list_[i].points[j].y);
printf("]\n");
if (series_list_[i].style == BAR_GRAPH) {
// There is a plt.bar function that draws bar plots,
// but it is *way* too slow to be useful.
printf(
"plt.vlines(x%zu, map(lambda t: min(t,0), y%zu), map(lambda t: "
"max(t,0), y%zu), color=rgb_colors[%zu], "
"label=\'%s\')\n",
i, i, i, i, series_list_[i].label.c_str());
} else if (series_list_[i].style == LINE_GRAPH) {
printf("plt.plot(x%zu, y%zu, color=rgb_colors[%zu], label=\'%s\')\n", i,
i, i, series_list_[i].label.c_str());
} else if (series_list_[i].style == LINE_DOT_GRAPH) {
printf(
"plt.plot(x%zu, y%zu, color=rgb_colors[%zu], label=\'%s\', "
"marker='.')\n",
i, i, i, series_list_[i].label.c_str());
} else if (series_list_[i].style == LINE_STEP_GRAPH) {
// Draw lines from (x[0],y[0]) to (x[1],y[0]) to (x[1],y[1]) and so on
// to illustrate the "steps". This can be expressed by duplicating all
// elements except the first in x and the last in y.
printf("x%zu = [v for dup in x%zu for v in [dup, dup]]\n", i, i);
printf("y%zu = [v for dup in y%zu for v in [dup, dup]]\n", i, i);
printf(
"plt.plot(x%zu[1:], y%zu[:-1], color=rgb_colors[%zu], "
"path_effects=[pe.Stroke(linewidth=2, foreground='black'), "
"pe.Normal()], "
"label=\'%s\')\n",
i, i, i, series_list_[i].label.c_str());
} else if (series_list_[i].style == DOT_GRAPH) {
printf(
"plt.plot(x%zu, y%zu, color=rgb_colors[%zu], label=\'%s\', "
"marker='o', ls=' ')\n",
i, i, i, series_list_[i].label.c_str());
} else {
printf("raise Exception(\"Unknown graph type\")\n");
}
}
// IntervalSeries
printf("interval_colors = ['#ff8e82','#5092fc','#c4ffc4']\n");
RTC_CHECK_LE(interval_list_.size(), 3);
// To get the intervals to show up in the legend we have to created patches
// for them.
printf("legend_patches = []\n");
for (size_t i = 0; i < interval_list_.size(); i++) {
// List intervals
printf("\n# === IntervalSeries: %s ===\n",
interval_list_[i].label.c_str());
printf("ival%zu = [", i);
if (interval_list_[i].intervals.size() > 0) {
printf("(%G, %G)", interval_list_[i].intervals[0].begin,
interval_list_[i].intervals[0].end);
}
for (size_t j = 1; j < interval_list_[i].intervals.size(); j++) {
printf(", (%G, %G)", interval_list_[i].intervals[j].begin,
interval_list_[i].intervals[j].end);
}
printf("]\n");
printf("for i in range(0, %zu):\n", interval_list_[i].intervals.size());
if (interval_list_[i].orientation == IntervalSeries::kVertical) {
printf(
" plt.axhspan(ival%zu[i][0], ival%zu[i][1], "
"facecolor=interval_colors[%zu], "
"alpha=0.3)\n",
i, i, i);
} else {
printf(
" plt.axvspan(ival%zu[i][0], ival%zu[i][1], "
"facecolor=interval_colors[%zu], "
"alpha=0.3)\n",
i, i, i);
}
printf(
"legend_patches.append(mpatches.Patch(ec=\'black\', "
"fc=interval_colors[%zu], label='%s'))\n",
i, interval_list_[i].label.c_str());
}
}
printf("plt.xlim(%f, %f)\n", xaxis_min_, xaxis_max_);
printf("plt.ylim(%f, %f)\n", yaxis_min_, yaxis_max_);
printf("plt.xlabel(\'%s\')\n", xaxis_label_.c_str());
printf("plt.ylabel(\'%s\')\n", yaxis_label_.c_str());
printf("plt.title(\'%s\')\n", title_.c_str());
if (!series_list_.empty() || !interval_list_.empty()) {
printf("handles, labels = plt.gca().get_legend_handles_labels()\n");
printf("for lp in legend_patches:\n");
printf(" handles.append(lp)\n");
printf(" labels.append(lp.get_label())\n");
printf("plt.legend(handles, labels, loc=\'best\', fontsize=\'small\')\n");
}
}
PythonPlotCollection::PythonPlotCollection() {}
PythonPlotCollection::~PythonPlotCollection() {}
void PythonPlotCollection::Draw() {
printf("import matplotlib.pyplot as plt\n");
printf("import matplotlib.patches as mpatches\n");
printf("import matplotlib.patheffects as pe\n");
printf("import colorsys\n");
for (size_t i = 0; i < plots_.size(); i++) {
printf("plt.figure(%zu)\n", i);
plots_[i]->Draw();
}
printf("plt.show()\n");
}
Plot* PythonPlotCollection::AppendNewPlot() {
Plot* plot = new PythonPlot();
plots_.push_back(std::unique_ptr<Plot>(plot));
return plot;
}
} // namespace plotting
} // namespace webrtc