| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/rtc_tools/event_log_visualizer/plot_python.h" |
| |
| #include <stdio.h> |
| |
| #include <memory> |
| |
| #include "webrtc/rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace plotting { |
| |
| PythonPlot::PythonPlot() {} |
| |
| PythonPlot::~PythonPlot() {} |
| |
| void PythonPlot::Draw() { |
| // Write python commands to stdout. Intended program usage is |
| // ./event_log_visualizer event_log160330.dump | python |
| |
| if (!series_list_.empty()) { |
| printf("color_count = %zu\n", series_list_.size()); |
| printf( |
| "hls_colors = [(i*1.0/color_count, 0.25+i*0.5/color_count, 0.8) for i " |
| "in range(color_count)]\n"); |
| printf("rgb_colors = [colorsys.hls_to_rgb(*hls) for hls in hls_colors]\n"); |
| |
| for (size_t i = 0; i < series_list_.size(); i++) { |
| printf("\n# === Series: %s ===\n", series_list_[i].label.c_str()); |
| // List x coordinates |
| printf("x%zu = [", i); |
| if (series_list_[i].points.size() > 0) |
| printf("%G", series_list_[i].points[0].x); |
| for (size_t j = 1; j < series_list_[i].points.size(); j++) |
| printf(", %G", series_list_[i].points[j].x); |
| printf("]\n"); |
| |
| // List y coordinates |
| printf("y%zu = [", i); |
| if (series_list_[i].points.size() > 0) |
| printf("%G", series_list_[i].points[0].y); |
| for (size_t j = 1; j < series_list_[i].points.size(); j++) |
| printf(", %G", series_list_[i].points[j].y); |
| printf("]\n"); |
| |
| if (series_list_[i].style == BAR_GRAPH) { |
| // There is a plt.bar function that draws bar plots, |
| // but it is *way* too slow to be useful. |
| printf( |
| "plt.vlines(x%zu, map(lambda t: min(t,0), y%zu), map(lambda t: " |
| "max(t,0), y%zu), color=rgb_colors[%zu], " |
| "label=\'%s\')\n", |
| i, i, i, i, series_list_[i].label.c_str()); |
| } else if (series_list_[i].style == LINE_GRAPH) { |
| printf("plt.plot(x%zu, y%zu, color=rgb_colors[%zu], label=\'%s\')\n", i, |
| i, i, series_list_[i].label.c_str()); |
| } else if (series_list_[i].style == LINE_DOT_GRAPH) { |
| printf( |
| "plt.plot(x%zu, y%zu, color=rgb_colors[%zu], label=\'%s\', " |
| "marker='.')\n", |
| i, i, i, series_list_[i].label.c_str()); |
| } else if (series_list_[i].style == LINE_STEP_GRAPH) { |
| // Draw lines from (x[0],y[0]) to (x[1],y[0]) to (x[1],y[1]) and so on |
| // to illustrate the "steps". This can be expressed by duplicating all |
| // elements except the first in x and the last in y. |
| printf("x%zu = [v for dup in x%zu for v in [dup, dup]]\n", i, i); |
| printf("y%zu = [v for dup in y%zu for v in [dup, dup]]\n", i, i); |
| printf( |
| "plt.plot(x%zu[1:], y%zu[:-1], color=rgb_colors[%zu], " |
| "path_effects=[pe.Stroke(linewidth=2, foreground='black'), " |
| "pe.Normal()], " |
| "label=\'%s\')\n", |
| i, i, i, series_list_[i].label.c_str()); |
| } else if (series_list_[i].style == DOT_GRAPH) { |
| printf( |
| "plt.plot(x%zu, y%zu, color=rgb_colors[%zu], label=\'%s\', " |
| "marker='o', ls=' ')\n", |
| i, i, i, series_list_[i].label.c_str()); |
| } else { |
| printf("raise Exception(\"Unknown graph type\")\n"); |
| } |
| } |
| |
| // IntervalSeries |
| printf("interval_colors = ['#ff8e82','#5092fc','#c4ffc4']\n"); |
| RTC_CHECK_LE(interval_list_.size(), 3); |
| // To get the intervals to show up in the legend we have to created patches |
| // for them. |
| printf("legend_patches = []\n"); |
| for (size_t i = 0; i < interval_list_.size(); i++) { |
| // List intervals |
| printf("\n# === IntervalSeries: %s ===\n", |
| interval_list_[i].label.c_str()); |
| printf("ival%zu = [", i); |
| if (interval_list_[i].intervals.size() > 0) { |
| printf("(%G, %G)", interval_list_[i].intervals[0].begin, |
| interval_list_[i].intervals[0].end); |
| } |
| for (size_t j = 1; j < interval_list_[i].intervals.size(); j++) { |
| printf(", (%G, %G)", interval_list_[i].intervals[j].begin, |
| interval_list_[i].intervals[j].end); |
| } |
| printf("]\n"); |
| |
| printf("for i in range(0, %zu):\n", interval_list_[i].intervals.size()); |
| if (interval_list_[i].orientation == IntervalSeries::kVertical) { |
| printf( |
| " plt.axhspan(ival%zu[i][0], ival%zu[i][1], " |
| "facecolor=interval_colors[%zu], " |
| "alpha=0.3)\n", |
| i, i, i); |
| } else { |
| printf( |
| " plt.axvspan(ival%zu[i][0], ival%zu[i][1], " |
| "facecolor=interval_colors[%zu], " |
| "alpha=0.3)\n", |
| i, i, i); |
| } |
| printf( |
| "legend_patches.append(mpatches.Patch(ec=\'black\', " |
| "fc=interval_colors[%zu], label='%s'))\n", |
| i, interval_list_[i].label.c_str()); |
| } |
| } |
| |
| printf("plt.xlim(%f, %f)\n", xaxis_min_, xaxis_max_); |
| printf("plt.ylim(%f, %f)\n", yaxis_min_, yaxis_max_); |
| printf("plt.xlabel(\'%s\')\n", xaxis_label_.c_str()); |
| printf("plt.ylabel(\'%s\')\n", yaxis_label_.c_str()); |
| printf("plt.title(\'%s\')\n", title_.c_str()); |
| if (!series_list_.empty() || !interval_list_.empty()) { |
| printf("handles, labels = plt.gca().get_legend_handles_labels()\n"); |
| printf("for lp in legend_patches:\n"); |
| printf(" handles.append(lp)\n"); |
| printf(" labels.append(lp.get_label())\n"); |
| printf("plt.legend(handles, labels, loc=\'best\', fontsize=\'small\')\n"); |
| } |
| } |
| |
| PythonPlotCollection::PythonPlotCollection() {} |
| |
| PythonPlotCollection::~PythonPlotCollection() {} |
| |
| void PythonPlotCollection::Draw() { |
| printf("import matplotlib.pyplot as plt\n"); |
| printf("import matplotlib.patches as mpatches\n"); |
| printf("import matplotlib.patheffects as pe\n"); |
| printf("import colorsys\n"); |
| for (size_t i = 0; i < plots_.size(); i++) { |
| printf("plt.figure(%zu)\n", i); |
| plots_[i]->Draw(); |
| } |
| printf("plt.show()\n"); |
| } |
| |
| Plot* PythonPlotCollection::AppendNewPlot() { |
| Plot* plot = new PythonPlot(); |
| plots_.push_back(std::unique_ptr<Plot>(plot)); |
| return plot; |
| } |
| |
| } // namespace plotting |
| } // namespace webrtc |