blob: d2379f09e08fe68c740e8913a767df99df1b8c7f [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include "webrtc/base/checks.h"
#include "webrtc/modules/audio_coding/codecs/builtin_audio_decoder_factory.h"
#include "webrtc/modules/audio_coding/neteq/tools/neteq_quality_test.h"
#include "webrtc/modules/audio_coding/neteq/tools/output_audio_file.h"
#include "webrtc/modules/audio_coding/neteq/tools/output_wav_file.h"
#include "webrtc/modules/audio_coding/neteq/tools/resample_input_audio_file.h"
#include "webrtc/test/testsupport/fileutils.h"
using std::string;
namespace webrtc {
namespace test {
const uint8_t kPayloadType = 95;
const int kOutputSizeMs = 10;
const int kInitSeed = 0x12345678;
const int kPacketLossTimeUnitMs = 10;
// Common validator for file names.
static bool ValidateFilename(const string& value, bool write) {
FILE* fid = write ? fopen(value.c_str(), "wb") : fopen(value.c_str(), "rb");
if (fid == nullptr)
return false;
fclose(fid);
return true;
}
// Define switch for input file name.
static bool ValidateInFilename(const char* flagname, const string& value) {
if (!ValidateFilename(value, false)) {
printf("Invalid input filename.");
return false;
}
return true;
}
DEFINE_string(
in_filename,
ResourcePath("audio_coding/speech_mono_16kHz", "pcm"),
"Filename for input audio (specify sample rate with --input_sample_rate ,"
"and channels with --channels).");
static const bool in_filename_dummy =
RegisterFlagValidator(&FLAGS_in_filename, &ValidateInFilename);
// Define switch for sample rate.
static bool ValidateSampleRate(const char* flagname, int32_t value) {
if (value == 8000 || value == 16000 || value == 32000 || value == 48000)
return true;
printf("Invalid sample rate should be 8000, 16000, 32000 or 48000 Hz.");
return false;
}
DEFINE_int32(input_sample_rate, 16000, "Sample rate of input file in Hz.");
static const bool sample_rate_dummy =
RegisterFlagValidator(&FLAGS_input_sample_rate, &ValidateSampleRate);
// Define switch for channels.
static bool ValidateChannels(const char* flagname, int32_t value) {
if (value == 1)
return true;
printf("Invalid number of channels, current support only 1.");
return false;
}
DEFINE_int32(channels, 1, "Number of channels in input audio.");
static const bool channels_dummy =
RegisterFlagValidator(&FLAGS_channels, &ValidateChannels);
// Define switch for output file name.
static bool ValidateOutFilename(const char* flagname, const string& value) {
if (!ValidateFilename(value, true)) {
printf("Invalid output filename.");
return false;
}
return true;
}
DEFINE_string(out_filename,
OutputPath() + "neteq_quality_test_out.pcm",
"Name of output audio file.");
static const bool out_filename_dummy =
RegisterFlagValidator(&FLAGS_out_filename, &ValidateOutFilename);
// Define switch for packet loss rate.
static bool ValidatePacketLossRate(const char* /* flag_name */, int32_t value) {
if (value >= 0 && value <= 100)
return true;
printf("Invalid packet loss percentile, should be between 0 and 100.");
return false;
}
// Define switch for runtime.
static bool ValidateRuntime(const char* flagname, int32_t value) {
if (value > 0)
return true;
printf("Invalid runtime, should be greater than 0.");
return false;
}
DEFINE_int32(runtime_ms, 10000, "Simulated runtime (milliseconds).");
static const bool runtime_dummy =
RegisterFlagValidator(&FLAGS_runtime_ms, &ValidateRuntime);
DEFINE_int32(packet_loss_rate, 10, "Percentile of packet loss.");
static const bool packet_loss_rate_dummy =
RegisterFlagValidator(&FLAGS_packet_loss_rate, &ValidatePacketLossRate);
// Define switch for random loss mode.
static bool ValidateRandomLossMode(const char* /* flag_name */, int32_t value) {
if (value >= 0 && value <= 2)
return true;
printf("Invalid random packet loss mode, should be between 0 and 2.");
return false;
}
DEFINE_int32(random_loss_mode, 1,
"Random loss mode: 0--no loss, 1--uniform loss, 2--Gilbert Elliot loss.");
static const bool random_loss_mode_dummy =
RegisterFlagValidator(&FLAGS_random_loss_mode, &ValidateRandomLossMode);
// Define switch for burst length.
static bool ValidateBurstLength(const char* /* flag_name */, int32_t value) {
if (value >= kPacketLossTimeUnitMs)
return true;
printf("Invalid burst length, should be greater than %d ms.",
kPacketLossTimeUnitMs);
return false;
}
DEFINE_int32(burst_length, 30,
"Burst length in milliseconds, only valid for Gilbert Elliot loss.");
static const bool burst_length_dummy =
RegisterFlagValidator(&FLAGS_burst_length, &ValidateBurstLength);
// Define switch for drift factor.
static bool ValidateDriftFactor(const char* /* flag_name */, double value) {
if (value > -0.1)
return true;
printf("Invalid drift factor, should be greater than -0.1.");
return false;
}
DEFINE_double(drift_factor, 0.0, "Time drift factor.");
static const bool drift_factor_dummy =
RegisterFlagValidator(&FLAGS_drift_factor, &ValidateDriftFactor);
// ProbTrans00Solver() is to calculate the transition probability from no-loss
// state to itself in a modified Gilbert Elliot packet loss model. The result is
// to achieve the target packet loss rate |loss_rate|, when a packet is not
// lost only if all |units| drawings within the duration of the packet result in
// no-loss.
static double ProbTrans00Solver(int units, double loss_rate,
double prob_trans_10) {
if (units == 1)
return prob_trans_10 / (1.0f - loss_rate) - prob_trans_10;
// 0 == prob_trans_00 ^ (units - 1) + (1 - loss_rate) / prob_trans_10 *
// prob_trans_00 - (1 - loss_rate) * (1 + 1 / prob_trans_10).
// There is a unique solution between 0.0 and 1.0, due to the monotonicity and
// an opposite sign at 0.0 and 1.0.
// For simplicity, we reformulate the equation as
// f(x) = x ^ (units - 1) + a x + b.
// Its derivative is
// f'(x) = (units - 1) x ^ (units - 2) + a.
// The derivative is strictly greater than 0 when x is between 0 and 1.
// We use Newton's method to solve the equation, iteration is
// x(k+1) = x(k) - f(x) / f'(x);
const double kPrecision = 0.001f;
const int kIterations = 100;
const double a = (1.0f - loss_rate) / prob_trans_10;
const double b = (loss_rate - 1.0f) * (1.0f + 1.0f / prob_trans_10);
double x = 0.0f; // Starting point;
double f = b;
double f_p;
int iter = 0;
while ((f >= kPrecision || f <= -kPrecision) && iter < kIterations) {
f_p = (units - 1.0f) * pow(x, units - 2) + a;
x -= f / f_p;
if (x > 1.0f) {
x = 1.0f;
} else if (x < 0.0f) {
x = 0.0f;
}
f = pow(x, units - 1) + a * x + b;
iter ++;
}
return x;
}
NetEqQualityTest::NetEqQualityTest(int block_duration_ms,
int in_sampling_khz,
int out_sampling_khz,
NetEqDecoder decoder_type)
: decoder_type_(decoder_type),
channels_(static_cast<size_t>(FLAGS_channels)),
decoded_time_ms_(0),
decodable_time_ms_(0),
drift_factor_(FLAGS_drift_factor),
packet_loss_rate_(FLAGS_packet_loss_rate),
block_duration_ms_(block_duration_ms),
in_sampling_khz_(in_sampling_khz),
out_sampling_khz_(out_sampling_khz),
in_size_samples_(
static_cast<size_t>(in_sampling_khz_ * block_duration_ms_)),
payload_size_bytes_(0),
max_payload_bytes_(0),
in_file_(new ResampleInputAudioFile(FLAGS_in_filename,
FLAGS_input_sample_rate,
in_sampling_khz * 1000)),
rtp_generator_(
new RtpGenerator(in_sampling_khz_, 0, 0, decodable_time_ms_)),
total_payload_size_bytes_(0) {
const std::string out_filename = FLAGS_out_filename;
const std::string log_filename = out_filename + ".log";
log_file_.open(log_filename.c_str(), std::ofstream::out);
RTC_CHECK(log_file_.is_open());
if (out_filename.size() >= 4 &&
out_filename.substr(out_filename.size() - 4) == ".wav") {
// Open a wav file.
output_.reset(
new webrtc::test::OutputWavFile(out_filename, 1000 * out_sampling_khz));
} else {
// Open a pcm file.
output_.reset(new webrtc::test::OutputAudioFile(out_filename));
}
NetEq::Config config;
config.sample_rate_hz = out_sampling_khz_ * 1000;
neteq_.reset(
NetEq::Create(config, webrtc::CreateBuiltinAudioDecoderFactory()));
max_payload_bytes_ = in_size_samples_ * channels_ * sizeof(int16_t);
in_data_.reset(new int16_t[in_size_samples_ * channels_]);
}
NetEqQualityTest::~NetEqQualityTest() {
log_file_.close();
}
bool NoLoss::Lost() {
return false;
}
UniformLoss::UniformLoss(double loss_rate)
: loss_rate_(loss_rate) {
}
bool UniformLoss::Lost() {
int drop_this = rand();
return (drop_this < loss_rate_ * RAND_MAX);
}
GilbertElliotLoss::GilbertElliotLoss(double prob_trans_11, double prob_trans_01)
: prob_trans_11_(prob_trans_11),
prob_trans_01_(prob_trans_01),
lost_last_(false),
uniform_loss_model_(new UniformLoss(0)) {
}
bool GilbertElliotLoss::Lost() {
// Simulate bursty channel (Gilbert model).
// (1st order) Markov chain model with memory of the previous/last
// packet state (lost or received).
if (lost_last_) {
// Previous packet was not received.
uniform_loss_model_->set_loss_rate(prob_trans_11_);
return lost_last_ = uniform_loss_model_->Lost();
} else {
uniform_loss_model_->set_loss_rate(prob_trans_01_);
return lost_last_ = uniform_loss_model_->Lost();
}
}
void NetEqQualityTest::SetUp() {
ASSERT_EQ(0,
neteq_->RegisterPayloadType(decoder_type_, "noname", kPayloadType));
rtp_generator_->set_drift_factor(drift_factor_);
int units = block_duration_ms_ / kPacketLossTimeUnitMs;
switch (FLAGS_random_loss_mode) {
case 1: {
// |unit_loss_rate| is the packet loss rate for each unit time interval
// (kPacketLossTimeUnitMs). Since a packet loss event is generated if any
// of |block_duration_ms_ / kPacketLossTimeUnitMs| unit time intervals of
// a full packet duration is drawn with a loss, |unit_loss_rate| fulfills
// (1 - unit_loss_rate) ^ (block_duration_ms_ / kPacketLossTimeUnitMs) ==
// 1 - packet_loss_rate.
double unit_loss_rate = (1.0f - pow(1.0f - 0.01f * packet_loss_rate_,
1.0f / units));
loss_model_.reset(new UniformLoss(unit_loss_rate));
break;
}
case 2: {
// |FLAGS_burst_length| should be integer times of kPacketLossTimeUnitMs.
ASSERT_EQ(0, FLAGS_burst_length % kPacketLossTimeUnitMs);
// We do not allow 100 percent packet loss in Gilbert Elliot model, which
// makes no sense.
ASSERT_GT(100, packet_loss_rate_);
// To guarantee the overall packet loss rate, transition probabilities
// need to satisfy:
// pi_0 * (1 - prob_trans_01_) ^ units +
// pi_1 * prob_trans_10_ ^ (units - 1) == 1 - loss_rate
// pi_0 = prob_trans_10 / (prob_trans_10 + prob_trans_01_)
// is the stationary state probability of no-loss
// pi_1 = prob_trans_01_ / (prob_trans_10 + prob_trans_01_)
// is the stationary state probability of loss
// After a derivation prob_trans_00 should satisfy:
// prob_trans_00 ^ (units - 1) = (loss_rate - 1) / prob_trans_10 *
// prob_trans_00 + (1 - loss_rate) * (1 + 1 / prob_trans_10).
double loss_rate = 0.01f * packet_loss_rate_;
double prob_trans_10 = 1.0f * kPacketLossTimeUnitMs / FLAGS_burst_length;
double prob_trans_00 = ProbTrans00Solver(units, loss_rate, prob_trans_10);
loss_model_.reset(new GilbertElliotLoss(1.0f - prob_trans_10,
1.0f - prob_trans_00));
break;
}
default: {
loss_model_.reset(new NoLoss);
break;
}
}
// Make sure that the packet loss profile is same for all derived tests.
srand(kInitSeed);
}
std::ofstream& NetEqQualityTest::Log() {
return log_file_;
}
bool NetEqQualityTest::PacketLost() {
int cycles = block_duration_ms_ / kPacketLossTimeUnitMs;
// The loop is to make sure that codecs with different block lengths share the
// same packet loss profile.
bool lost = false;
for (int idx = 0; idx < cycles; idx ++) {
if (loss_model_->Lost()) {
// The packet will be lost if any of the drawings indicates a loss, but
// the loop has to go on to make sure that codecs with different block
// lengths keep the same pace.
lost = true;
}
}
return lost;
}
int NetEqQualityTest::Transmit() {
int packet_input_time_ms =
rtp_generator_->GetRtpHeader(kPayloadType, in_size_samples_,
&rtp_header_);
Log() << "Packet of size "
<< payload_size_bytes_
<< " bytes, for frame at "
<< packet_input_time_ms
<< " ms ";
if (payload_size_bytes_ > 0) {
if (!PacketLost()) {
int ret = neteq_->InsertPacket(
rtp_header_,
rtc::ArrayView<const uint8_t>(payload_.data(), payload_size_bytes_),
packet_input_time_ms * in_sampling_khz_);
if (ret != NetEq::kOK)
return -1;
Log() << "was sent.";
} else {
Log() << "was lost.";
}
}
Log() << std::endl;
return packet_input_time_ms;
}
int NetEqQualityTest::DecodeBlock() {
bool muted;
int ret = neteq_->GetAudio(&out_frame_, &muted);
RTC_CHECK(!muted);
if (ret != NetEq::kOK) {
return -1;
} else {
RTC_DCHECK_EQ(out_frame_.num_channels_, channels_);
RTC_DCHECK_EQ(out_frame_.samples_per_channel_,
static_cast<size_t>(kOutputSizeMs * out_sampling_khz_));
RTC_CHECK(output_->WriteArray(
out_frame_.data_,
out_frame_.samples_per_channel_ * out_frame_.num_channels_));
return static_cast<int>(out_frame_.samples_per_channel_);
}
}
void NetEqQualityTest::Simulate() {
int audio_size_samples;
while (decoded_time_ms_ < FLAGS_runtime_ms) {
// Assume 10 packets in packets buffer.
while (decodable_time_ms_ - 10 * block_duration_ms_ < decoded_time_ms_) {
ASSERT_TRUE(in_file_->Read(in_size_samples_ * channels_, &in_data_[0]));
payload_.Clear();
payload_size_bytes_ = EncodeBlock(&in_data_[0],
in_size_samples_, &payload_,
max_payload_bytes_);
total_payload_size_bytes_ += payload_size_bytes_;
decodable_time_ms_ = Transmit() + block_duration_ms_;
}
audio_size_samples = DecodeBlock();
if (audio_size_samples > 0) {
decoded_time_ms_ += audio_size_samples / out_sampling_khz_;
}
}
Log() << "Average bit rate was "
<< 8.0f * total_payload_size_bytes_ / FLAGS_runtime_ms
<< " kbps"
<< std::endl;
}
} // namespace test
} // namespace webrtc