blob: 38ab2e9ba4acc0dbd70db6e2546c86ef30bffe60 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// TODO(hlundin): The functionality in this file should be moved into one or
// several classes.
#include <assert.h>
#include <errno.h>
#include <limits.h> // For ULONG_MAX returned by strtoul.
#include <stdio.h>
#include <stdlib.h> // For strtoul.
#include <algorithm>
#include <iostream>
#include <memory>
#include <limits>
#include <string>
#include "gflags/gflags.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/safe_conversions.h"
#include "webrtc/modules/audio_coding/codecs/builtin_audio_decoder_factory.h"
#include "webrtc/modules/audio_coding/codecs/pcm16b/pcm16b.h"
#include "webrtc/modules/audio_coding/neteq/include/neteq.h"
#include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h"
#include "webrtc/modules/audio_coding/neteq/tools/output_audio_file.h"
#include "webrtc/modules/audio_coding/neteq/tools/output_wav_file.h"
#include "webrtc/modules/audio_coding/neteq/tools/packet.h"
#include "webrtc/modules/audio_coding/neteq/tools/rtc_event_log_source.h"
#include "webrtc/modules/audio_coding/neteq/tools/rtp_file_source.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/system_wrappers/include/trace.h"
#include "webrtc/test/rtp_file_reader.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/typedefs.h"
namespace webrtc {
namespace test {
namespace {
// Parses the input string for a valid SSRC (at the start of the string). If a
// valid SSRC is found, it is written to the output variable |ssrc|, and true is
// returned. Otherwise, false is returned.
bool ParseSsrc(const std::string& str, uint32_t* ssrc) {
if (str.empty())
return true;
int base = 10;
// Look for "0x" or "0X" at the start and change base to 16 if found.
if ((str.compare(0, 2, "0x") == 0) || (str.compare(0, 2, "0X") == 0))
base = 16;
errno = 0;
char* end_ptr;
unsigned long value = strtoul(str.c_str(), &end_ptr, base);
if (value == ULONG_MAX && errno == ERANGE)
return false; // Value out of range for unsigned long.
if (sizeof(unsigned long) > sizeof(uint32_t) && value > 0xFFFFFFFF)
return false; // Value out of range for uint32_t.
if (end_ptr - str.c_str() < static_cast<ptrdiff_t>(str.length()))
return false; // Part of the string was not parsed.
*ssrc = static_cast<uint32_t>(value);
return true;
}
// Flag validators.
bool ValidatePayloadType(const char* flagname, int32_t value) {
if (value >= 0 && value <= 127) // Value is ok.
return true;
printf("Invalid value for --%s: %d\n", flagname, static_cast<int>(value));
return false;
}
bool ValidateSsrcValue(const char* flagname, const std::string& str) {
uint32_t dummy_ssrc;
return ParseSsrc(str, &dummy_ssrc);
}
// Define command line flags.
DEFINE_int32(pcmu, 0, "RTP payload type for PCM-u");
const bool pcmu_dummy =
google::RegisterFlagValidator(&FLAGS_pcmu, &ValidatePayloadType);
DEFINE_int32(pcma, 8, "RTP payload type for PCM-a");
const bool pcma_dummy =
google::RegisterFlagValidator(&FLAGS_pcma, &ValidatePayloadType);
DEFINE_int32(ilbc, 102, "RTP payload type for iLBC");
const bool ilbc_dummy =
google::RegisterFlagValidator(&FLAGS_ilbc, &ValidatePayloadType);
DEFINE_int32(isac, 103, "RTP payload type for iSAC");
const bool isac_dummy =
google::RegisterFlagValidator(&FLAGS_isac, &ValidatePayloadType);
DEFINE_int32(isac_swb, 104, "RTP payload type for iSAC-swb (32 kHz)");
const bool isac_swb_dummy =
google::RegisterFlagValidator(&FLAGS_isac_swb, &ValidatePayloadType);
DEFINE_int32(opus, 111, "RTP payload type for Opus");
const bool opus_dummy =
google::RegisterFlagValidator(&FLAGS_opus, &ValidatePayloadType);
DEFINE_int32(pcm16b, 93, "RTP payload type for PCM16b-nb (8 kHz)");
const bool pcm16b_dummy =
google::RegisterFlagValidator(&FLAGS_pcm16b, &ValidatePayloadType);
DEFINE_int32(pcm16b_wb, 94, "RTP payload type for PCM16b-wb (16 kHz)");
const bool pcm16b_wb_dummy =
google::RegisterFlagValidator(&FLAGS_pcm16b_wb, &ValidatePayloadType);
DEFINE_int32(pcm16b_swb32, 95, "RTP payload type for PCM16b-swb32 (32 kHz)");
const bool pcm16b_swb32_dummy =
google::RegisterFlagValidator(&FLAGS_pcm16b_swb32, &ValidatePayloadType);
DEFINE_int32(pcm16b_swb48, 96, "RTP payload type for PCM16b-swb48 (48 kHz)");
const bool pcm16b_swb48_dummy =
google::RegisterFlagValidator(&FLAGS_pcm16b_swb48, &ValidatePayloadType);
DEFINE_int32(g722, 9, "RTP payload type for G.722");
const bool g722_dummy =
google::RegisterFlagValidator(&FLAGS_g722, &ValidatePayloadType);
DEFINE_int32(avt, 106, "RTP payload type for AVT/DTMF");
const bool avt_dummy =
google::RegisterFlagValidator(&FLAGS_avt, &ValidatePayloadType);
DEFINE_int32(red, 117, "RTP payload type for redundant audio (RED)");
const bool red_dummy =
google::RegisterFlagValidator(&FLAGS_red, &ValidatePayloadType);
DEFINE_int32(cn_nb, 13, "RTP payload type for comfort noise (8 kHz)");
const bool cn_nb_dummy =
google::RegisterFlagValidator(&FLAGS_cn_nb, &ValidatePayloadType);
DEFINE_int32(cn_wb, 98, "RTP payload type for comfort noise (16 kHz)");
const bool cn_wb_dummy =
google::RegisterFlagValidator(&FLAGS_cn_wb, &ValidatePayloadType);
DEFINE_int32(cn_swb32, 99, "RTP payload type for comfort noise (32 kHz)");
const bool cn_swb32_dummy =
google::RegisterFlagValidator(&FLAGS_cn_swb32, &ValidatePayloadType);
DEFINE_int32(cn_swb48, 100, "RTP payload type for comfort noise (48 kHz)");
const bool cn_swb48_dummy =
google::RegisterFlagValidator(&FLAGS_cn_swb48, &ValidatePayloadType);
DEFINE_bool(codec_map, false, "Prints the mapping between RTP payload type and "
"codec");
DEFINE_string(replacement_audio_file, "",
"A PCM file that will be used to populate ""dummy"" RTP packets");
DEFINE_string(ssrc,
"",
"Only use packets with this SSRC (decimal or hex, the latter "
"starting with 0x)");
const bool hex_ssrc_dummy =
google::RegisterFlagValidator(&FLAGS_ssrc, &ValidateSsrcValue);
// Maps a codec type to a printable name string.
std::string CodecName(NetEqDecoder codec) {
switch (codec) {
case NetEqDecoder::kDecoderPCMu:
return "PCM-u";
case NetEqDecoder::kDecoderPCMa:
return "PCM-a";
case NetEqDecoder::kDecoderILBC:
return "iLBC";
case NetEqDecoder::kDecoderISAC:
return "iSAC";
case NetEqDecoder::kDecoderISACswb:
return "iSAC-swb (32 kHz)";
case NetEqDecoder::kDecoderOpus:
return "Opus";
case NetEqDecoder::kDecoderPCM16B:
return "PCM16b-nb (8 kHz)";
case NetEqDecoder::kDecoderPCM16Bwb:
return "PCM16b-wb (16 kHz)";
case NetEqDecoder::kDecoderPCM16Bswb32kHz:
return "PCM16b-swb32 (32 kHz)";
case NetEqDecoder::kDecoderPCM16Bswb48kHz:
return "PCM16b-swb48 (48 kHz)";
case NetEqDecoder::kDecoderG722:
return "G.722";
case NetEqDecoder::kDecoderRED:
return "redundant audio (RED)";
case NetEqDecoder::kDecoderAVT:
return "AVT/DTMF";
case NetEqDecoder::kDecoderCNGnb:
return "comfort noise (8 kHz)";
case NetEqDecoder::kDecoderCNGwb:
return "comfort noise (16 kHz)";
case NetEqDecoder::kDecoderCNGswb32kHz:
return "comfort noise (32 kHz)";
case NetEqDecoder::kDecoderCNGswb48kHz:
return "comfort noise (48 kHz)";
default:
assert(false);
return "undefined";
}
}
void RegisterPayloadType(NetEq* neteq,
NetEqDecoder codec,
const std::string& name,
google::int32 flag) {
if (neteq->RegisterPayloadType(codec, name, static_cast<uint8_t>(flag))) {
std::cerr << "Cannot register payload type " << flag << " as "
<< CodecName(codec) << std::endl;
exit(1);
}
}
// Registers all decoders in |neteq|.
void RegisterPayloadTypes(NetEq* neteq) {
assert(neteq);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderPCMu, "pcmu", FLAGS_pcmu);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderPCMa, "pcma", FLAGS_pcma);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderILBC, "ilbc", FLAGS_ilbc);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderISAC, "isac", FLAGS_isac);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderISACswb, "isac-swb",
FLAGS_isac_swb);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderOpus, "opus", FLAGS_opus);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderPCM16B, "pcm16-nb",
FLAGS_pcm16b);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderPCM16Bwb, "pcm16-wb",
FLAGS_pcm16b_wb);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderPCM16Bswb32kHz,
"pcm16-swb32", FLAGS_pcm16b_swb32);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderPCM16Bswb48kHz,
"pcm16-swb48", FLAGS_pcm16b_swb48);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderG722, "g722", FLAGS_g722);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderAVT, "avt", FLAGS_avt);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderRED, "red", FLAGS_red);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderCNGnb, "cng-nb",
FLAGS_cn_nb);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderCNGwb, "cng-wb",
FLAGS_cn_wb);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderCNGswb32kHz, "cng-swb32",
FLAGS_cn_swb32);
RegisterPayloadType(neteq, NetEqDecoder::kDecoderCNGswb48kHz, "cng-swb48",
FLAGS_cn_swb48);
}
void PrintCodecMappingEntry(NetEqDecoder codec, google::int32 flag) {
std::cout << CodecName(codec) << ": " << flag << std::endl;
}
void PrintCodecMapping() {
PrintCodecMappingEntry(NetEqDecoder::kDecoderPCMu, FLAGS_pcmu);
PrintCodecMappingEntry(NetEqDecoder::kDecoderPCMa, FLAGS_pcma);
PrintCodecMappingEntry(NetEqDecoder::kDecoderILBC, FLAGS_ilbc);
PrintCodecMappingEntry(NetEqDecoder::kDecoderISAC, FLAGS_isac);
PrintCodecMappingEntry(NetEqDecoder::kDecoderISACswb, FLAGS_isac_swb);
PrintCodecMappingEntry(NetEqDecoder::kDecoderOpus, FLAGS_opus);
PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16B, FLAGS_pcm16b);
PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bwb, FLAGS_pcm16b_wb);
PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bswb32kHz,
FLAGS_pcm16b_swb32);
PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bswb48kHz,
FLAGS_pcm16b_swb48);
PrintCodecMappingEntry(NetEqDecoder::kDecoderG722, FLAGS_g722);
PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT, FLAGS_avt);
PrintCodecMappingEntry(NetEqDecoder::kDecoderRED, FLAGS_red);
PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGnb, FLAGS_cn_nb);
PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGwb, FLAGS_cn_wb);
PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGswb32kHz, FLAGS_cn_swb32);
PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGswb48kHz, FLAGS_cn_swb48);
}
bool IsComfortNoise(uint8_t payload_type) {
return payload_type == FLAGS_cn_nb || payload_type == FLAGS_cn_wb ||
payload_type == FLAGS_cn_swb32 || payload_type == FLAGS_cn_swb48;
}
int CodecSampleRate(uint8_t payload_type) {
if (payload_type == FLAGS_pcmu || payload_type == FLAGS_pcma ||
payload_type == FLAGS_ilbc || payload_type == FLAGS_pcm16b ||
payload_type == FLAGS_cn_nb)
return 8000;
if (payload_type == FLAGS_isac || payload_type == FLAGS_pcm16b_wb ||
payload_type == FLAGS_g722 || payload_type == FLAGS_cn_wb)
return 16000;
if (payload_type == FLAGS_isac_swb || payload_type == FLAGS_pcm16b_swb32 ||
payload_type == FLAGS_cn_swb32)
return 32000;
if (payload_type == FLAGS_opus || payload_type == FLAGS_pcm16b_swb48 ||
payload_type == FLAGS_cn_swb48)
return 48000;
if (payload_type == FLAGS_avt || payload_type == FLAGS_red)
return 0;
return -1;
}
int CodecTimestampRate(uint8_t payload_type) {
return (payload_type == FLAGS_g722) ? 8000 : CodecSampleRate(payload_type);
}
size_t ReplacePayload(InputAudioFile* replacement_audio_file,
std::unique_ptr<int16_t[]>* replacement_audio,
std::unique_ptr<uint8_t[]>* payload,
size_t* payload_mem_size_bytes,
size_t* frame_size_samples,
WebRtcRTPHeader* rtp_header,
const Packet* next_packet) {
size_t payload_len = 0;
// Check for CNG.
if (IsComfortNoise(rtp_header->header.payloadType)) {
// If CNG, simply insert a zero-energy one-byte payload.
if (*payload_mem_size_bytes < 1) {
(*payload).reset(new uint8_t[1]);
*payload_mem_size_bytes = 1;
}
(*payload)[0] = 127; // Max attenuation of CNG.
payload_len = 1;
} else {
assert(next_packet->virtual_payload_length_bytes() > 0);
// Check if payload length has changed.
if (next_packet->header().sequenceNumber ==
rtp_header->header.sequenceNumber + 1) {
if (*frame_size_samples !=
next_packet->header().timestamp - rtp_header->header.timestamp) {
*frame_size_samples =
next_packet->header().timestamp - rtp_header->header.timestamp;
(*replacement_audio).reset(
new int16_t[*frame_size_samples]);
*payload_mem_size_bytes = 2 * *frame_size_samples;
(*payload).reset(new uint8_t[*payload_mem_size_bytes]);
}
}
// Get new speech.
assert((*replacement_audio).get());
if (CodecTimestampRate(rtp_header->header.payloadType) !=
CodecSampleRate(rtp_header->header.payloadType) ||
rtp_header->header.payloadType == FLAGS_red ||
rtp_header->header.payloadType == FLAGS_avt) {
// Some codecs have different sample and timestamp rates. And neither
// RED nor DTMF is supported for replacement.
std::cerr << "Codec not supported for audio replacement." <<
std::endl;
Trace::ReturnTrace();
exit(1);
}
assert(*frame_size_samples > 0);
if (!replacement_audio_file->Read(*frame_size_samples,
(*replacement_audio).get())) {
std::cerr << "Could not read replacement audio file." << std::endl;
Trace::ReturnTrace();
exit(1);
}
// Encode it as PCM16.
assert((*payload).get());
payload_len = WebRtcPcm16b_Encode((*replacement_audio).get(),
*frame_size_samples,
(*payload).get());
assert(payload_len == 2 * *frame_size_samples);
// Change payload type to PCM16.
switch (CodecSampleRate(rtp_header->header.payloadType)) {
case 8000:
rtp_header->header.payloadType = static_cast<uint8_t>(FLAGS_pcm16b);
break;
case 16000:
rtp_header->header.payloadType = static_cast<uint8_t>(FLAGS_pcm16b_wb);
break;
case 32000:
rtp_header->header.payloadType =
static_cast<uint8_t>(FLAGS_pcm16b_swb32);
break;
case 48000:
rtp_header->header.payloadType =
static_cast<uint8_t>(FLAGS_pcm16b_swb48);
break;
default:
std::cerr << "Payload type " <<
static_cast<int>(rtp_header->header.payloadType) <<
" not supported or unknown." << std::endl;
Trace::ReturnTrace();
exit(1);
}
}
return payload_len;
}
int RunTest(int argc, char* argv[]) {
static const int kOutputBlockSizeMs = 10;
std::string program_name = argv[0];
std::string usage = "Tool for decoding an RTP dump file using NetEq.\n"
"Run " + program_name + " --helpshort for usage.\n"
"Example usage:\n" + program_name +
" input.rtp output.{pcm, wav}\n";
google::SetUsageMessage(usage);
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_codec_map) {
PrintCodecMapping();
}
if (argc != 3) {
if (FLAGS_codec_map) {
// We have already printed the codec map. Just end the program.
return 0;
}
// Print usage information.
std::cout << google::ProgramUsage();
return 0;
}
printf("Input file: %s\n", argv[1]);
bool is_rtp_dump = false;
std::unique_ptr<PacketSource> file_source;
RtcEventLogSource* event_log_source = nullptr;
if (RtpFileSource::ValidRtpDump(argv[1]) ||
RtpFileSource::ValidPcap(argv[1])) {
is_rtp_dump = true;
file_source.reset(RtpFileSource::Create(argv[1]));
} else {
event_log_source = RtcEventLogSource::Create(argv[1]);
file_source.reset(event_log_source);
}
assert(file_source.get());
// Check if an SSRC value was provided.
if (!FLAGS_ssrc.empty()) {
uint32_t ssrc;
RTC_CHECK(ParseSsrc(FLAGS_ssrc, &ssrc)) << "Flag verification has failed.";
file_source->SelectSsrc(ssrc);
}
// Check if a replacement audio file was provided, and if so, open it.
bool replace_payload = false;
std::unique_ptr<InputAudioFile> replacement_audio_file;
if (!FLAGS_replacement_audio_file.empty()) {
replacement_audio_file.reset(
new InputAudioFile(FLAGS_replacement_audio_file));
replace_payload = true;
}
// Read first packet.
std::unique_ptr<Packet> packet(file_source->NextPacket());
if (!packet) {
printf(
"Warning: input file is empty, or the filters did not match any "
"packets\n");
Trace::ReturnTrace();
return 0;
}
if (packet->payload_length_bytes() == 0 && !replace_payload) {
std::cerr << "Warning: input file contains header-only packets, but no "
<< "replacement file is specified." << std::endl;
Trace::ReturnTrace();
return -1;
}
// Check the sample rate.
int sample_rate_hz = CodecSampleRate(packet->header().payloadType);
if (sample_rate_hz <= 0) {
printf("Warning: Invalid sample rate from RTP packet.\n");
Trace::ReturnTrace();
return 0;
}
// Open the output file now that we know the sample rate. (Rate is only needed
// for wav files.)
// Check output file type.
std::string output_file_name = argv[2];
std::unique_ptr<AudioSink> output;
if (output_file_name.size() >= 4 &&
output_file_name.substr(output_file_name.size() - 4) == ".wav") {
// Open a wav file.
output.reset(new OutputWavFile(output_file_name, sample_rate_hz));
} else {
// Open a pcm file.
output.reset(new OutputAudioFile(output_file_name));
}
std::cout << "Output file: " << argv[2] << std::endl;
// Enable tracing.
Trace::CreateTrace();
Trace::SetTraceFile((OutputPath() + "neteq_trace.txt").c_str());
Trace::set_level_filter(kTraceAll);
// Initialize NetEq instance.
NetEq::Config config;
config.sample_rate_hz = sample_rate_hz;
NetEq* neteq =
NetEq::Create(config, CreateBuiltinAudioDecoderFactory());
RegisterPayloadTypes(neteq);
// Set up variables for audio replacement if needed.
std::unique_ptr<Packet> next_packet;
bool next_packet_available = false;
size_t input_frame_size_timestamps = 0;
std::unique_ptr<int16_t[]> replacement_audio;
std::unique_ptr<uint8_t[]> payload;
size_t payload_mem_size_bytes = 0;
if (replace_payload) {
// Initially assume that the frame size is 30 ms at the initial sample rate.
// This value will be replaced with the correct one as soon as two
// consecutive packets are found.
input_frame_size_timestamps = 30 * sample_rate_hz / 1000;
replacement_audio.reset(new int16_t[input_frame_size_timestamps]);
payload_mem_size_bytes = 2 * input_frame_size_timestamps;
payload.reset(new uint8_t[payload_mem_size_bytes]);
next_packet = file_source->NextPacket();
assert(next_packet);
next_packet_available = true;
}
// This is the main simulation loop.
// Set the simulation clock to start immediately with the first packet.
int64_t start_time_ms = rtc::checked_cast<int64_t>(packet->time_ms());
int64_t time_now_ms = start_time_ms;
int64_t next_input_time_ms = time_now_ms;
int64_t next_output_time_ms = time_now_ms;
if (time_now_ms % kOutputBlockSizeMs != 0) {
// Make sure that next_output_time_ms is rounded up to the next multiple
// of kOutputBlockSizeMs. (Legacy bit-exactness.)
next_output_time_ms +=
kOutputBlockSizeMs - time_now_ms % kOutputBlockSizeMs;
}
bool packet_available = true;
bool output_event_available = true;
if (!is_rtp_dump) {
next_output_time_ms = event_log_source->NextAudioOutputEventMs();
if (next_output_time_ms == std::numeric_limits<int64_t>::max())
output_event_available = false;
start_time_ms = time_now_ms =
std::min(next_input_time_ms, next_output_time_ms);
}
while (packet_available || output_event_available) {
// Advance time to next event.
time_now_ms = std::min(next_input_time_ms, next_output_time_ms);
// Check if it is time to insert packet.
while (time_now_ms >= next_input_time_ms && packet_available) {
assert(packet->virtual_payload_length_bytes() > 0);
// Parse RTP header.
WebRtcRTPHeader rtp_header;
packet->ConvertHeader(&rtp_header);
const uint8_t* payload_ptr = packet->payload();
size_t payload_len = packet->payload_length_bytes();
if (replace_payload) {
payload_len = ReplacePayload(replacement_audio_file.get(),
&replacement_audio,
&payload,
&payload_mem_size_bytes,
&input_frame_size_timestamps,
&rtp_header,
next_packet.get());
payload_ptr = payload.get();
}
int error = neteq->InsertPacket(
rtp_header, rtc::ArrayView<const uint8_t>(payload_ptr, payload_len),
static_cast<uint32_t>(packet->time_ms() * sample_rate_hz / 1000));
if (error != NetEq::kOK) {
if (neteq->LastError() == NetEq::kUnknownRtpPayloadType) {
std::cerr << "RTP Payload type "
<< static_cast<int>(rtp_header.header.payloadType)
<< " is unknown." << std::endl;
std::cerr << "Use --codec_map to view default mapping." << std::endl;
std::cerr << "Use --helpshort for information on how to make custom "
"mappings." << std::endl;
} else {
std::cerr << "InsertPacket returned error code " << neteq->LastError()
<< std::endl;
std::cerr << "Header data:" << std::endl;
std::cerr << " PT = "
<< static_cast<int>(rtp_header.header.payloadType)
<< std::endl;
std::cerr << " SN = " << rtp_header.header.sequenceNumber
<< std::endl;
std::cerr << " TS = " << rtp_header.header.timestamp << std::endl;
}
}
// Get next packet from file.
std::unique_ptr<Packet> temp_packet = file_source->NextPacket();
if (temp_packet) {
packet = std::move(temp_packet);
if (replace_payload) {
// At this point |packet| contains the packet *after* |next_packet|.
// Swap Packet objects between |packet| and |next_packet|.
packet.swap(next_packet);
// Swap the status indicators unless they're already the same.
if (packet_available != next_packet_available) {
packet_available = !packet_available;
next_packet_available = !next_packet_available;
}
}
next_input_time_ms = rtc::checked_cast<int64_t>(packet->time_ms());
} else {
// Set next input time to the maximum value of int64_t to prevent the
// time_now_ms from becoming stuck at the final value.
next_input_time_ms = std::numeric_limits<int64_t>::max();
packet_available = false;
}
RTC_DCHECK(!temp_packet); // Must have transferred to another variable.
}
// Check if it is time to get output audio.
while (time_now_ms >= next_output_time_ms && output_event_available) {
AudioFrame out_frame;
bool muted;
int error = neteq->GetAudio(&out_frame, &muted);
RTC_CHECK(!muted);
if (error != NetEq::kOK) {
std::cerr << "GetAudio returned error code " <<
neteq->LastError() << std::endl;
} else {
sample_rate_hz = out_frame.sample_rate_hz_;
}
// Write to file.
// TODO(hlundin): Make writing to file optional.
if (!output->WriteArray(out_frame.data_, out_frame.samples_per_channel_ *
out_frame.num_channels_)) {
std::cerr << "Error while writing to file" << std::endl;
Trace::ReturnTrace();
exit(1);
}
if (is_rtp_dump) {
next_output_time_ms += kOutputBlockSizeMs;
if (!packet_available)
output_event_available = false;
} else {
next_output_time_ms = event_log_source->NextAudioOutputEventMs();
if (next_output_time_ms == std::numeric_limits<int64_t>::max())
output_event_available = false;
}
}
}
printf("Simulation done\n");
printf("Produced %i ms of audio\n",
static_cast<int>(time_now_ms - start_time_ms));
delete neteq;
Trace::ReturnTrace();
return 0;
}
} // namespace
} // namespace test
} // namespace webrtc
int main(int argc, char* argv[]) {
webrtc::test::RunTest(argc, argv);
}