blob: 09faf56874f9727213e9e1426f1aecd1f29a3dff [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_mixer/frame_combiner.h"
#include <algorithm>
#include <array>
#include <functional>
#include <memory>
#include "api/array_view.h"
#include "audio/utility/audio_frame_operations.h"
#include "modules/audio_mixer/audio_frame_manipulator.h"
#include "modules/audio_mixer/audio_mixer_impl.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
// Stereo, 48 kHz, 10 ms.
constexpr int kMaximalFrameSize = 2 * 48 * 10;
void CombineZeroFrames(bool use_limiter,
AudioProcessing* limiter,
AudioFrame* audio_frame_for_mixing) {
audio_frame_for_mixing->elapsed_time_ms_ = -1;
AudioFrameOperations::Mute(audio_frame_for_mixing);
// The limiter should still process a zero frame to avoid jumps in
// its gain curve.
if (use_limiter) {
RTC_DCHECK(limiter);
// The limiter smoothly increases frames with half gain to full
// volume. Here there's no need to apply half gain, since the frame
// is zero anyway.
limiter->ProcessStream(audio_frame_for_mixing);
}
}
void CombineOneFrame(const AudioFrame* input_frame,
bool use_limiter,
AudioProcessing* limiter,
AudioFrame* audio_frame_for_mixing) {
audio_frame_for_mixing->timestamp_ = input_frame->timestamp_;
audio_frame_for_mixing->elapsed_time_ms_ = input_frame->elapsed_time_ms_;
// TODO(yujo): can we optimize muted frames?
std::copy(input_frame->data(),
input_frame->data() +
input_frame->num_channels_ * input_frame->samples_per_channel_,
audio_frame_for_mixing->mutable_data());
if (use_limiter) {
AudioFrameOperations::ApplyHalfGain(audio_frame_for_mixing);
RTC_DCHECK(limiter);
limiter->ProcessStream(audio_frame_for_mixing);
AudioFrameOperations::Add(*audio_frame_for_mixing, audio_frame_for_mixing);
}
}
// Lower-level helper function called from Combine(...) when there
// are several input frames.
//
// TODO(aleloi): change interface to ArrayView<int16_t> output_frame
// once we have gotten rid of the APM limiter.
//
// Only the 'data' field of output_frame should be modified. The
// rest are used for potentially sending the output to the APM
// limiter.
void CombineMultipleFrames(
const std::vector<rtc::ArrayView<const int16_t>>& input_frames,
bool use_limiter,
AudioProcessing* limiter,
AudioFrame* audio_frame_for_mixing) {
RTC_DCHECK(!input_frames.empty());
RTC_DCHECK(audio_frame_for_mixing);
const size_t frame_length = input_frames.front().size();
for (const auto& frame : input_frames) {
RTC_DCHECK_EQ(frame_length, frame.size());
}
// Algorithm: int16 frames are added to a sufficiently large
// statically allocated int32 buffer. For > 2 participants this is
// more efficient than addition in place in the int16 audio
// frame. The audio quality loss due to halving the samples is
// smaller than 16-bit addition in place.
RTC_DCHECK_GE(kMaximalFrameSize, frame_length);
std::array<int32_t, kMaximalFrameSize> add_buffer;
add_buffer.fill(0);
for (const auto& frame : input_frames) {
// TODO(yujo): skip this for muted frames.
std::transform(frame.begin(), frame.end(), add_buffer.begin(),
add_buffer.begin(), std::plus<int32_t>());
}
if (use_limiter) {
// Halve all samples to avoid saturation before limiting.
std::transform(add_buffer.begin(), add_buffer.begin() + frame_length,
audio_frame_for_mixing->mutable_data(), [](int32_t a) {
return rtc::saturated_cast<int16_t>(a / 2);
});
// Smoothly limit the audio.
RTC_DCHECK(limiter);
const int error = limiter->ProcessStream(audio_frame_for_mixing);
if (error != limiter->kNoError) {
RTC_LOG_F(LS_ERROR) << "Error from AudioProcessing: " << error;
RTC_NOTREACHED();
}
// And now we can safely restore the level. This procedure results in
// some loss of resolution, deemed acceptable.
//
// It's possible to apply the gain in the AGC (with a target level of 0 dbFS
// and compression gain of 6 dB). However, in the transition frame when this
// is enabled (moving from one to two audio sources) it has the potential to
// create discontinuities in the mixed frame.
//
// Instead we double the frame (with addition since left-shifting a
// negative value is undefined).
AudioFrameOperations::Add(*audio_frame_for_mixing, audio_frame_for_mixing);
} else {
std::transform(add_buffer.begin(), add_buffer.begin() + frame_length,
audio_frame_for_mixing->mutable_data(),
[](int32_t a) { return rtc::saturated_cast<int16_t>(a); });
}
}
std::unique_ptr<AudioProcessing> CreateLimiter() {
Config config;
config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
std::unique_ptr<AudioProcessing> limiter(AudioProcessing::Create(config));
RTC_DCHECK(limiter);
webrtc::AudioProcessing::Config apm_config;
apm_config.residual_echo_detector.enabled = false;
limiter->ApplyConfig(apm_config);
const auto check_no_error = [](int x) {
RTC_DCHECK_EQ(x, AudioProcessing::kNoError);
};
auto* const gain_control = limiter->gain_control();
check_no_error(gain_control->set_mode(GainControl::kFixedDigital));
// We smoothly limit the mixed frame to -7 dbFS. -6 would correspond to the
// divide-by-2 but -7 is used instead to give a bit of headroom since the
// AGC is not a hard limiter.
check_no_error(gain_control->set_target_level_dbfs(7));
check_no_error(gain_control->set_compression_gain_db(0));
check_no_error(gain_control->enable_limiter(true));
check_no_error(gain_control->Enable(true));
return limiter;
}
} // namespace
FrameCombiner::FrameCombiner(bool use_apm_limiter)
: use_apm_limiter_(use_apm_limiter),
limiter_(use_apm_limiter ? CreateLimiter() : nullptr) {}
FrameCombiner::~FrameCombiner() = default;
void FrameCombiner::Combine(const std::vector<AudioFrame*>& mix_list,
size_t number_of_channels,
int sample_rate,
size_t number_of_streams,
AudioFrame* audio_frame_for_mixing) const {
RTC_DCHECK(audio_frame_for_mixing);
const size_t samples_per_channel = static_cast<size_t>(
(sample_rate * webrtc::AudioMixerImpl::kFrameDurationInMs) / 1000);
for (const auto* frame : mix_list) {
RTC_DCHECK_EQ(samples_per_channel, frame->samples_per_channel_);
RTC_DCHECK_EQ(sample_rate, frame->sample_rate_hz_);
}
// Frames could be both stereo and mono.
for (auto* frame : mix_list) {
RemixFrame(number_of_channels, frame);
}
// TODO(aleloi): Issue bugs.webrtc.org/3390.
// Audio frame timestamp. The 'timestamp_' field is set to dummy
// value '0', because it is only supported in the one channel case and
// is then updated in the helper functions.
audio_frame_for_mixing->UpdateFrame(
0, nullptr, samples_per_channel, sample_rate, AudioFrame::kUndefined,
AudioFrame::kVadUnknown, number_of_channels);
const bool use_limiter_this_round = use_apm_limiter_ && number_of_streams > 1;
if (mix_list.empty()) {
CombineZeroFrames(use_limiter_this_round, limiter_.get(),
audio_frame_for_mixing);
} else if (mix_list.size() == 1) {
CombineOneFrame(mix_list.front(), use_limiter_this_round, limiter_.get(),
audio_frame_for_mixing);
} else {
std::vector<rtc::ArrayView<const int16_t>> input_frames;
for (size_t i = 0; i < mix_list.size(); ++i) {
input_frames.push_back(rtc::ArrayView<const int16_t>(
mix_list[i]->data(), samples_per_channel * number_of_channels));
}
CombineMultipleFrames(input_frames, use_limiter_this_round, limiter_.get(),
audio_frame_for_mixing);
}
}
} // namespace webrtc