blob: 0f3dd8643e3c89a8a7673c534031eaed5d6cd073 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "api/video/i420_buffer.h"
#include "common_video/include/video_frame.h"
#include "modules/video_coding/utility/quality_scaler.h"
#include "rtc_base/event.h"
#include "rtc_base/fakeclock.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "video/overuse_frame_detector.h"
namespace webrtc {
using ::testing::InvokeWithoutArgs;
namespace {
const int kWidth = 640;
const int kHeight = 480;
const int kFrameIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
const int kProcessTimeUs = 5 * rtc::kNumMicrosecsPerMillisec;
} // namespace
class MockCpuOveruseObserver : public AdaptationObserverInterface {
public:
MockCpuOveruseObserver() {}
virtual ~MockCpuOveruseObserver() {}
MOCK_METHOD1(AdaptUp, void(AdaptReason));
MOCK_METHOD1(AdaptDown, void(AdaptReason));
};
class CpuOveruseObserverImpl : public AdaptationObserverInterface {
public:
CpuOveruseObserverImpl() :
overuse_(0),
normaluse_(0) {}
virtual ~CpuOveruseObserverImpl() {}
void AdaptDown(AdaptReason) { ++overuse_; }
void AdaptUp(AdaptReason) { ++normaluse_; }
int overuse_;
int normaluse_;
};
class OveruseFrameDetectorUnderTest : public OveruseFrameDetector {
public:
OveruseFrameDetectorUnderTest(const CpuOveruseOptions& options,
AdaptationObserverInterface* overuse_observer,
EncodedFrameObserver* encoder_timing,
CpuOveruseMetricsObserver* metrics_observer)
: OveruseFrameDetector(options,
overuse_observer,
encoder_timing,
metrics_observer) {}
~OveruseFrameDetectorUnderTest() {}
using OveruseFrameDetector::CheckForOveruse;
};
class OveruseFrameDetectorTest : public ::testing::Test,
public CpuOveruseMetricsObserver {
protected:
void SetUp() override {
observer_.reset(new MockCpuOveruseObserver());
options_.min_process_count = 0;
ReinitializeOveruseDetector();
}
void ReinitializeOveruseDetector() {
overuse_detector_.reset(new OveruseFrameDetectorUnderTest(
options_, observer_.get(), nullptr, this));
}
void OnEncodedFrameTimeMeasured(int encode_time_ms,
const CpuOveruseMetrics& metrics) override {
metrics_ = metrics;
}
int InitialUsage() {
return ((options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5;
}
void InsertAndSendFramesWithInterval(int num_frames,
int interval_us,
int width,
int height,
int delay_us) {
VideoFrame frame(I420Buffer::Create(width, height),
webrtc::kVideoRotation_0, 0);
uint32_t timestamp = 0;
while (num_frames-- > 0) {
frame.set_timestamp(timestamp);
overuse_detector_->FrameCaptured(frame, rtc::TimeMicros());
clock_.AdvanceTimeMicros(delay_us);
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros());
clock_.AdvanceTimeMicros(interval_us - delay_us);
timestamp += interval_us * 90 / 1000;
}
}
void ForceUpdate(int width, int height) {
// Insert one frame, wait a second and then put in another to force update
// the usage. From the tests where these are used, adding another sample
// doesn't affect the expected outcome (this is mainly to check initial
// values and whether the overuse detector has been reset or not).
InsertAndSendFramesWithInterval(2, rtc::kNumMicrosecsPerSec,
width, height, kFrameIntervalUs);
}
void TriggerOveruse(int num_times) {
const int kDelayUs = 32 * rtc::kNumMicrosecsPerMillisec;
for (int i = 0; i < num_times; ++i) {
InsertAndSendFramesWithInterval(
1000, kFrameIntervalUs, kWidth, kHeight, kDelayUs);
overuse_detector_->CheckForOveruse();
}
}
void TriggerUnderuse() {
const int kDelayUs1 = 5000;
const int kDelayUs2 = 6000;
InsertAndSendFramesWithInterval(
1300, kFrameIntervalUs, kWidth, kHeight, kDelayUs1);
InsertAndSendFramesWithInterval(
1, kFrameIntervalUs, kWidth, kHeight, kDelayUs2);
overuse_detector_->CheckForOveruse();
}
int UsagePercent() { return metrics_.encode_usage_percent; }
int64_t OveruseProcessingTimeLimitForFramerate(int fps) const {
int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
int64_t max_processing_time_us =
(frame_interval * options_.high_encode_usage_threshold_percent) / 100;
return max_processing_time_us;
}
int64_t UnderuseProcessingTimeLimitForFramerate(int fps) const {
int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
int64_t max_processing_time_us =
(frame_interval * options_.low_encode_usage_threshold_percent) / 100;
return max_processing_time_us;
}
CpuOveruseOptions options_;
rtc::ScopedFakeClock clock_;
std::unique_ptr<MockCpuOveruseObserver> observer_;
std::unique_ptr<OveruseFrameDetectorUnderTest> overuse_detector_;
CpuOveruseMetrics metrics_;
static const auto reason_ = AdaptationObserverInterface::AdaptReason::kCpu;
};
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruse) {
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
overuse_detector_.reset(new OveruseFrameDetectorUnderTest(
options_, nullptr, nullptr, this));
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(0);
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(2);
TriggerOveruse(options_.high_threshold_consecutive_count);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) {
const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec;
options_.min_process_count = 1;
CpuOveruseObserverImpl overuse_observer;
overuse_detector_.reset(new OveruseFrameDetectorUnderTest(
options_, &overuse_observer, nullptr, this));
InsertAndSendFramesWithInterval(
1200, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
overuse_detector_->CheckForOveruse();
EXPECT_EQ(0, overuse_observer.normaluse_);
clock_.AdvanceTimeMicros(kProcessIntervalUs);
overuse_detector_->CheckForOveruse();
EXPECT_EQ(1, overuse_observer.normaluse_);
}
TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) {
EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(0);
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(64);
for (size_t i = 0; i < 64; ++i) {
TriggerOveruse(options_.high_threshold_consecutive_count);
}
}
TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) {
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
options_.high_threshold_consecutive_count = 2;
ReinitializeOveruseDetector();
TriggerOveruse(2);
}
TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
options_.high_threshold_consecutive_count = 2;
ReinitializeOveruseDetector();
TriggerOveruse(1);
}
TEST_F(OveruseFrameDetectorTest, ProcessingUsage) {
InsertAndSendFramesWithInterval(
1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) {
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset (with new width/height).
ForceUpdate(kWidth, kHeight + 1);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) {
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
2, options_.frame_timeout_interval_ms *
rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset.
InsertAndSendFramesWithInterval(
2, (options_.frame_timeout_interval_ms + 1) *
rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) {
options_.min_frame_samples = 40;
ReinitializeOveruseDetector();
InsertAndSendFramesWithInterval(
40, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
EXPECT_EQ(InitialUsage(), UsagePercent());
// Pass time far enough to digest all previous samples.
clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec);
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
// The last sample has not been processed here.
EXPECT_EQ(InitialUsage(), UsagePercent());
// Pass time far enough to digest all previous samples, 41 in total.
clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec);
InsertAndSendFramesWithInterval(
1, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) {
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, MeasuresMultipleConcurrentSamples) {
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_))
.Times(testing::AtLeast(1));
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
static const size_t kNumFramesEncodingDelay = 3;
VideoFrame frame(I420Buffer::Create(kWidth, kHeight),
webrtc::kVideoRotation_0, 0);
for (size_t i = 0; i < 1000; ++i) {
// Unique timestamps.
frame.set_timestamp(static_cast<uint32_t>(i));
overuse_detector_->FrameCaptured(frame, rtc::TimeMicros());
clock_.AdvanceTimeMicros(kIntervalUs);
if (i > kNumFramesEncodingDelay) {
overuse_detector_->FrameSent(
static_cast<uint32_t>(i - kNumFramesEncodingDelay),
rtc::TimeMicros());
}
overuse_detector_->CheckForOveruse();
}
}
TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) {
// >85% encoding time should trigger overuse.
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_))
.Times(testing::AtLeast(1));
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec;
VideoFrame frame(I420Buffer::Create(kWidth, kHeight),
webrtc::kVideoRotation_0, 0);
uint32_t timestamp = 0;
for (size_t i = 0; i < 1000; ++i) {
frame.set_timestamp(timestamp);
overuse_detector_->FrameCaptured(frame, rtc::TimeMicros());
// Encode and send first parts almost instantly.
clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerMillisec);
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros());
// Encode heavier part, resulting in >85% usage total.
clock_.AdvanceTimeMicros(kDelayUs - rtc::kNumMicrosecsPerMillisec);
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros());
clock_.AdvanceTimeMicros(kIntervalUs - kDelayUs);
timestamp += kIntervalUs * 90 / 1000;
overuse_detector_->CheckForOveruse();
}
}
TEST_F(OveruseFrameDetectorTest, RunOnTqNormalUsage) {
rtc::TaskQueue queue("OveruseFrameDetectorTestQueue");
rtc::Event event(false, false);
queue.PostTask([this, &event] {
overuse_detector_->StartCheckForOveruse();
event.Set();
});
event.Wait(rtc::Event::kForever);
// Expect NormalUsage(). When called, stop the |overuse_detector_| and then
// set |event| to end the test.
EXPECT_CALL(*(observer_.get()), AdaptUp(reason_))
.WillOnce(InvokeWithoutArgs([this, &event] {
overuse_detector_->StopCheckForOveruse();
event.Set();
}));
queue.PostTask([this] {
const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec;
const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec;
InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
kDelayUs1);
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kDelayUs2);
});
EXPECT_TRUE(event.Wait(10000));
}
TEST_F(OveruseFrameDetectorTest, MaxIntervalScalesWithFramerate) {
const int kCapturerMaxFrameRate = 30;
const int kEncodeMaxFrameRate = 20; // Maximum fps the encoder can sustain.
// Trigger overuse.
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kCapturerMaxFrameRate;
// Processing time just below over use limit given kEncodeMaxFrameRate.
int64_t processing_time_us =
(98 * OveruseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse();
}
// Simulate frame rate reduction and normal usage.
frame_interval_us = rtc::kNumMicrosecsPerSec / kEncodeMaxFrameRate;
overuse_detector_->OnTargetFramerateUpdated(kEncodeMaxFrameRate);
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse();
}
// Reduce processing time to trigger underuse.
processing_time_us =
(98 * UnderuseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(1);
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse();
}
TEST_F(OveruseFrameDetectorTest, RespectsMinFramerate) {
const int kMinFrameRate = 7; // Minimum fps allowed by current detector impl.
overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate);
// Normal usage just at the limit.
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMinFrameRate;
// Processing time just below over use limit given kEncodeMaxFrameRate.
int64_t processing_time_us =
(98 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse();
}
// Over the limit to overuse.
processing_time_us =
(102 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse();
}
// Reduce input frame rate. Should still trigger overuse.
overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate - 1);
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse();
}
}
TEST_F(OveruseFrameDetectorTest, LimitsMaxFrameInterval) {
const int kMaxFrameRate = 20;
overuse_detector_->OnTargetFramerateUpdated(kMaxFrameRate);
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMaxFrameRate;
// Maximum frame interval allowed is 35% above ideal.
int64_t max_frame_interval_us = (135 * frame_interval_us) / 100;
// Maximum processing time, without triggering overuse, allowed with the above
// frame interval.
int64_t max_processing_time_us =
(max_frame_interval_us * options_.high_encode_usage_threshold_percent) /
100;
// Processing time just below overuse limit given kMaxFrameRate.
int64_t processing_time_us = (98 * max_processing_time_us) / 100;
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
kHeight, processing_time_us);
overuse_detector_->CheckForOveruse();
}
// Go above limit, trigger overuse.
processing_time_us = (102 * max_processing_time_us) / 100;
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
kHeight, processing_time_us);
overuse_detector_->CheckForOveruse();
}
// Increase frame interval, should still trigger overuse.
max_frame_interval_us *= 2;
EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
kHeight, processing_time_us);
overuse_detector_->CheckForOveruse();
}
}
} // namespace webrtc