| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/audio_buffer.h" |
| |
| #include <string.h> |
| |
| #include <cstdint> |
| |
| #include "common_audio/channel_buffer.h" |
| #include "common_audio/include/audio_util.h" |
| #include "common_audio/resampler/push_sinc_resampler.h" |
| #include "modules/audio_processing/splitting_filter.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| constexpr size_t kSamplesPer32kHzChannel = 320; |
| constexpr size_t kSamplesPer48kHzChannel = 480; |
| constexpr size_t kMaxSamplesPerChannel = AudioBuffer::kMaxSampleRate / 100; |
| |
| size_t NumBandsFromFramesPerChannel(size_t num_frames) { |
| if (num_frames == kSamplesPer32kHzChannel) { |
| return 2; |
| } |
| if (num_frames == kSamplesPer48kHzChannel) { |
| return 3; |
| } |
| return 1; |
| } |
| |
| } // namespace |
| |
| AudioBuffer::AudioBuffer(size_t input_rate, |
| size_t input_num_channels, |
| size_t buffer_rate, |
| size_t buffer_num_channels, |
| size_t output_rate, |
| size_t output_num_channels) |
| : AudioBuffer(static_cast<int>(input_rate) / 100, |
| input_num_channels, |
| static_cast<int>(buffer_rate) / 100, |
| buffer_num_channels, |
| static_cast<int>(output_rate) / 100) {} |
| |
| AudioBuffer::AudioBuffer(size_t input_num_frames, |
| size_t input_num_channels, |
| size_t buffer_num_frames, |
| size_t buffer_num_channels, |
| size_t output_num_frames) |
| : input_num_frames_(input_num_frames), |
| input_num_channels_(input_num_channels), |
| buffer_num_frames_(buffer_num_frames), |
| buffer_num_channels_(buffer_num_channels), |
| output_num_frames_(output_num_frames), |
| output_num_channels_(0), |
| num_channels_(buffer_num_channels), |
| num_bands_(NumBandsFromFramesPerChannel(buffer_num_frames_)), |
| num_split_frames_(rtc::CheckedDivExact(buffer_num_frames_, num_bands_)), |
| data_( |
| new ChannelBuffer<float>(buffer_num_frames_, buffer_num_channels_)) { |
| RTC_DCHECK_GT(input_num_frames_, 0); |
| RTC_DCHECK_GT(buffer_num_frames_, 0); |
| RTC_DCHECK_GT(output_num_frames_, 0); |
| RTC_DCHECK_GT(input_num_channels_, 0); |
| RTC_DCHECK_GT(buffer_num_channels_, 0); |
| RTC_DCHECK_LE(buffer_num_channels_, input_num_channels_); |
| |
| const bool input_resampling_needed = input_num_frames_ != buffer_num_frames_; |
| const bool output_resampling_needed = |
| output_num_frames_ != buffer_num_frames_; |
| if (input_resampling_needed) { |
| for (size_t i = 0; i < buffer_num_channels_; ++i) { |
| input_resamplers_.push_back(std::unique_ptr<PushSincResampler>( |
| new PushSincResampler(input_num_frames_, buffer_num_frames_))); |
| } |
| } |
| |
| if (output_resampling_needed) { |
| for (size_t i = 0; i < buffer_num_channels_; ++i) { |
| output_resamplers_.push_back(std::unique_ptr<PushSincResampler>( |
| new PushSincResampler(buffer_num_frames_, output_num_frames_))); |
| } |
| } |
| |
| if (num_bands_ > 1) { |
| split_data_.reset(new ChannelBuffer<float>( |
| buffer_num_frames_, buffer_num_channels_, num_bands_)); |
| splitting_filter_.reset(new SplittingFilter( |
| buffer_num_channels_, num_bands_, buffer_num_frames_)); |
| } |
| } |
| |
| AudioBuffer::~AudioBuffer() {} |
| |
| void AudioBuffer::set_downmixing_to_specific_channel(size_t channel) { |
| downmix_by_averaging_ = false; |
| RTC_DCHECK_GT(input_num_channels_, channel); |
| channel_for_downmixing_ = std::min(channel, input_num_channels_ - 1); |
| } |
| |
| void AudioBuffer::set_downmixing_by_averaging() { |
| downmix_by_averaging_ = true; |
| } |
| |
| void AudioBuffer::CopyFrom(const float* const* stacked_data, |
| const StreamConfig& stream_config) { |
| RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_); |
| RTC_DCHECK_EQ(stream_config.num_channels(), input_num_channels_); |
| RestoreNumChannels(); |
| const bool downmix_needed = input_num_channels_ > 1 && num_channels_ == 1; |
| |
| const bool resampling_needed = input_num_frames_ != buffer_num_frames_; |
| |
| if (downmix_needed) { |
| RTC_DCHECK_GE(kMaxSamplesPerChannel, input_num_frames_); |
| |
| std::array<float, kMaxSamplesPerChannel> downmix; |
| if (downmix_by_averaging_) { |
| const float kOneByNumChannels = 1.f / input_num_channels_; |
| for (size_t i = 0; i < input_num_frames_; ++i) { |
| float value = stacked_data[0][i]; |
| for (size_t j = 1; j < input_num_channels_; ++j) { |
| value += stacked_data[j][i]; |
| } |
| downmix[i] = value * kOneByNumChannels; |
| } |
| } |
| const float* downmixed_data = downmix_by_averaging_ |
| ? downmix.data() |
| : stacked_data[channel_for_downmixing_]; |
| |
| if (resampling_needed) { |
| input_resamplers_[0]->Resample(downmixed_data, input_num_frames_, |
| data_->channels()[0], buffer_num_frames_); |
| } |
| const float* data_to_convert = |
| resampling_needed ? data_->channels()[0] : downmixed_data; |
| FloatToFloatS16(data_to_convert, buffer_num_frames_, data_->channels()[0]); |
| } else { |
| if (resampling_needed) { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| input_resamplers_[i]->Resample(stacked_data[i], input_num_frames_, |
| data_->channels()[i], |
| buffer_num_frames_); |
| FloatToFloatS16(data_->channels()[i], buffer_num_frames_, |
| data_->channels()[i]); |
| } |
| } else { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| FloatToFloatS16(stacked_data[i], buffer_num_frames_, |
| data_->channels()[i]); |
| } |
| } |
| } |
| } |
| |
| void AudioBuffer::CopyTo(const StreamConfig& stream_config, |
| float* const* stacked_data) { |
| RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_); |
| |
| const bool resampling_needed = output_num_frames_ != buffer_num_frames_; |
| if (resampling_needed) { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| FloatS16ToFloat(data_->channels()[i], buffer_num_frames_, |
| data_->channels()[i]); |
| output_resamplers_[i]->Resample(data_->channels()[i], buffer_num_frames_, |
| stacked_data[i], output_num_frames_); |
| } |
| } else { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| FloatS16ToFloat(data_->channels()[i], buffer_num_frames_, |
| stacked_data[i]); |
| } |
| } |
| |
| for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) { |
| memcpy(stacked_data[i], stacked_data[0], |
| output_num_frames_ * sizeof(**stacked_data)); |
| } |
| } |
| |
| void AudioBuffer::CopyTo(AudioBuffer* buffer) const { |
| RTC_DCHECK_EQ(buffer->num_frames(), output_num_frames_); |
| |
| const bool resampling_needed = output_num_frames_ != buffer_num_frames_; |
| if (resampling_needed) { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| output_resamplers_[i]->Resample(data_->channels()[i], buffer_num_frames_, |
| buffer->channels()[i], |
| buffer->num_frames()); |
| } |
| } else { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| memcpy(buffer->channels()[i], data_->channels()[i], |
| buffer_num_frames_ * sizeof(**buffer->channels())); |
| } |
| } |
| |
| for (size_t i = num_channels_; i < buffer->num_channels(); ++i) { |
| memcpy(buffer->channels()[i], buffer->channels()[0], |
| output_num_frames_ * sizeof(**buffer->channels())); |
| } |
| } |
| |
| void AudioBuffer::RestoreNumChannels() { |
| num_channels_ = buffer_num_channels_; |
| data_->set_num_channels(buffer_num_channels_); |
| if (split_data_.get()) { |
| split_data_->set_num_channels(buffer_num_channels_); |
| } |
| } |
| |
| void AudioBuffer::set_num_channels(size_t num_channels) { |
| RTC_DCHECK_GE(buffer_num_channels_, num_channels); |
| num_channels_ = num_channels; |
| data_->set_num_channels(num_channels); |
| if (split_data_.get()) { |
| split_data_->set_num_channels(num_channels); |
| } |
| } |
| |
| // The resampler is only for supporting 48kHz to 16kHz in the reverse stream. |
| void AudioBuffer::CopyFrom(const int16_t* const interleaved_data, |
| const StreamConfig& stream_config) { |
| RTC_DCHECK_EQ(stream_config.num_channels(), input_num_channels_); |
| RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_); |
| RestoreNumChannels(); |
| |
| const bool resampling_required = input_num_frames_ != buffer_num_frames_; |
| |
| const int16_t* interleaved = interleaved_data; |
| if (num_channels_ == 1) { |
| if (input_num_channels_ == 1) { |
| if (resampling_required) { |
| std::array<float, kMaxSamplesPerChannel> float_buffer; |
| S16ToFloatS16(interleaved, input_num_frames_, float_buffer.data()); |
| input_resamplers_[0]->Resample(float_buffer.data(), input_num_frames_, |
| data_->channels()[0], |
| buffer_num_frames_); |
| } else { |
| S16ToFloatS16(interleaved, input_num_frames_, data_->channels()[0]); |
| } |
| } else { |
| std::array<float, kMaxSamplesPerChannel> float_buffer; |
| float* downmixed_data = |
| resampling_required ? float_buffer.data() : data_->channels()[0]; |
| if (downmix_by_averaging_) { |
| for (size_t j = 0, k = 0; j < input_num_frames_; ++j) { |
| int32_t sum = 0; |
| for (size_t i = 0; i < input_num_channels_; ++i, ++k) { |
| sum += interleaved[k]; |
| } |
| downmixed_data[j] = sum / static_cast<int16_t>(input_num_channels_); |
| } |
| } else { |
| for (size_t j = 0, k = channel_for_downmixing_; j < input_num_frames_; |
| ++j, k += input_num_channels_) { |
| downmixed_data[j] = interleaved[k]; |
| } |
| } |
| |
| if (resampling_required) { |
| input_resamplers_[0]->Resample(downmixed_data, input_num_frames_, |
| data_->channels()[0], |
| buffer_num_frames_); |
| } |
| } |
| } else { |
| auto deinterleave_channel = [](size_t channel, size_t num_channels, |
| size_t samples_per_channel, const int16_t* x, |
| float* y) { |
| for (size_t j = 0, k = channel; j < samples_per_channel; |
| ++j, k += num_channels) { |
| y[j] = x[k]; |
| } |
| }; |
| |
| if (resampling_required) { |
| std::array<float, kMaxSamplesPerChannel> float_buffer; |
| for (size_t i = 0; i < num_channels_; ++i) { |
| deinterleave_channel(i, num_channels_, input_num_frames_, interleaved, |
| float_buffer.data()); |
| input_resamplers_[i]->Resample(float_buffer.data(), input_num_frames_, |
| data_->channels()[i], |
| buffer_num_frames_); |
| } |
| } else { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| deinterleave_channel(i, num_channels_, input_num_frames_, interleaved, |
| data_->channels()[i]); |
| } |
| } |
| } |
| } |
| |
| void AudioBuffer::CopyTo(const StreamConfig& stream_config, |
| int16_t* const interleaved_data) { |
| const size_t config_num_channels = stream_config.num_channels(); |
| |
| RTC_DCHECK(config_num_channels == num_channels_ || num_channels_ == 1); |
| RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_); |
| |
| const bool resampling_required = buffer_num_frames_ != output_num_frames_; |
| |
| int16_t* interleaved = interleaved_data; |
| if (num_channels_ == 1) { |
| std::array<float, kMaxSamplesPerChannel> float_buffer; |
| |
| if (resampling_required) { |
| output_resamplers_[0]->Resample(data_->channels()[0], buffer_num_frames_, |
| float_buffer.data(), output_num_frames_); |
| } |
| const float* deinterleaved = |
| resampling_required ? float_buffer.data() : data_->channels()[0]; |
| |
| if (config_num_channels == 1) { |
| for (size_t j = 0; j < output_num_frames_; ++j) { |
| interleaved[j] = FloatS16ToS16(deinterleaved[j]); |
| } |
| } else { |
| for (size_t i = 0, k = 0; i < output_num_frames_; ++i) { |
| float tmp = FloatS16ToS16(deinterleaved[i]); |
| for (size_t j = 0; j < config_num_channels; ++j, ++k) { |
| interleaved[k] = tmp; |
| } |
| } |
| } |
| } else { |
| auto interleave_channel = [](size_t channel, size_t num_channels, |
| size_t samples_per_channel, const float* x, |
| int16_t* y) { |
| for (size_t k = 0, j = channel; k < samples_per_channel; |
| ++k, j += num_channels) { |
| y[j] = FloatS16ToS16(x[k]); |
| } |
| }; |
| |
| if (resampling_required) { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| std::array<float, kMaxSamplesPerChannel> float_buffer; |
| output_resamplers_[i]->Resample(data_->channels()[i], |
| buffer_num_frames_, float_buffer.data(), |
| output_num_frames_); |
| interleave_channel(i, config_num_channels, output_num_frames_, |
| float_buffer.data(), interleaved); |
| } |
| } else { |
| for (size_t i = 0; i < num_channels_; ++i) { |
| interleave_channel(i, config_num_channels, output_num_frames_, |
| data_->channels()[i], interleaved); |
| } |
| } |
| |
| for (size_t i = num_channels_; i < config_num_channels; ++i) { |
| for (size_t j = 0, k = i, n = num_channels_; j < output_num_frames_; |
| ++j, k += config_num_channels, n += config_num_channels) { |
| interleaved[k] = interleaved[n]; |
| } |
| } |
| } |
| } |
| |
| void AudioBuffer::SplitIntoFrequencyBands() { |
| splitting_filter_->Analysis(data_.get(), split_data_.get()); |
| } |
| |
| void AudioBuffer::MergeFrequencyBands() { |
| splitting_filter_->Synthesis(split_data_.get(), data_.get()); |
| } |
| |
| void AudioBuffer::ExportSplitChannelData( |
| size_t channel, |
| int16_t* const* split_band_data) const { |
| for (size_t k = 0; k < num_bands(); ++k) { |
| const float* band_data = split_bands_const(channel)[k]; |
| |
| RTC_DCHECK(split_band_data[k]); |
| RTC_DCHECK(band_data); |
| for (size_t i = 0; i < num_frames_per_band(); ++i) { |
| split_band_data[k][i] = FloatS16ToS16(band_data[i]); |
| } |
| } |
| } |
| |
| void AudioBuffer::ImportSplitChannelData( |
| size_t channel, |
| const int16_t* const* split_band_data) { |
| for (size_t k = 0; k < num_bands(); ++k) { |
| float* band_data = split_bands(channel)[k]; |
| RTC_DCHECK(split_band_data[k]); |
| RTC_DCHECK(band_data); |
| for (size_t i = 0; i < num_frames_per_band(); ++i) { |
| band_data[i] = split_band_data[k][i]; |
| } |
| } |
| } |
| |
| } // namespace webrtc |