blob: 053460e2bada0aacd065e341dadea21325554b47 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/include/receive_statistics.h"
#include <memory>
#include <vector>
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
#include "rtc_base/random.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using ::testing::SizeIs;
using ::testing::UnorderedElementsAre;
const size_t kPacketSize1 = 100;
const size_t kPacketSize2 = 300;
const uint32_t kSsrc1 = 101;
const uint32_t kSsrc2 = 202;
const uint32_t kSsrc3 = 203;
const uint32_t kSsrc4 = 304;
RtpPacketReceived CreateRtpPacket(uint32_t ssrc,
size_t header_size,
size_t payload_size,
size_t padding_size) {
RtpPacketReceived packet;
packet.SetSsrc(ssrc);
packet.SetSequenceNumber(100);
packet.set_payload_type_frequency(90000);
RTC_CHECK_GE(header_size, 12);
RTC_CHECK_EQ(header_size % 4, 0);
if (header_size > 12) {
// Insert csrcs to increase header size.
const int num_csrcs = (header_size - 12) / 4;
std::vector<uint32_t> csrcs(num_csrcs);
packet.SetCsrcs(csrcs);
}
packet.SetPayloadSize(payload_size);
packet.SetPadding(padding_size);
return packet;
}
RtpPacketReceived CreateRtpPacket(uint32_t ssrc, size_t packet_size) {
return CreateRtpPacket(ssrc, 12, packet_size - 12, 0);
}
void IncrementSequenceNumber(RtpPacketReceived* packet, uint16_t incr) {
packet->SetSequenceNumber(packet->SequenceNumber() + incr);
}
void IncrementSequenceNumber(RtpPacketReceived* packet) {
IncrementSequenceNumber(packet, 1);
}
class ReceiveStatisticsTest : public ::testing::Test {
public:
ReceiveStatisticsTest()
: clock_(0), receive_statistics_(ReceiveStatistics::Create(&clock_)) {
packet1_ = CreateRtpPacket(kSsrc1, kPacketSize1);
packet2_ = CreateRtpPacket(kSsrc2, kPacketSize2);
}
protected:
SimulatedClock clock_;
std::unique_ptr<ReceiveStatistics> receive_statistics_;
RtpPacketReceived packet1_;
RtpPacketReceived packet2_;
};
TEST_F(ReceiveStatisticsTest, TwoIncomingSsrcs) {
receive_statistics_->OnRtpPacket(packet1_);
IncrementSequenceNumber(&packet1_);
receive_statistics_->OnRtpPacket(packet2_);
IncrementSequenceNumber(&packet2_);
clock_.AdvanceTimeMilliseconds(100);
receive_statistics_->OnRtpPacket(packet1_);
IncrementSequenceNumber(&packet1_);
receive_statistics_->OnRtpPacket(packet2_);
IncrementSequenceNumber(&packet2_);
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
ASSERT_TRUE(statistician != NULL);
EXPECT_GT(statistician->BitrateReceived(), 0u);
StreamDataCounters counters = statistician->GetReceiveStreamDataCounters();
EXPECT_EQ(176u, counters.transmitted.payload_bytes);
EXPECT_EQ(24u, counters.transmitted.header_bytes);
EXPECT_EQ(0u, counters.transmitted.padding_bytes);
EXPECT_EQ(2u, counters.transmitted.packets);
statistician = receive_statistics_->GetStatistician(kSsrc2);
ASSERT_TRUE(statistician != NULL);
EXPECT_GT(statistician->BitrateReceived(), 0u);
counters = statistician->GetReceiveStreamDataCounters();
EXPECT_EQ(576u, counters.transmitted.payload_bytes);
EXPECT_EQ(24u, counters.transmitted.header_bytes);
EXPECT_EQ(0u, counters.transmitted.padding_bytes);
EXPECT_EQ(2u, counters.transmitted.packets);
EXPECT_EQ(2u, receive_statistics_->RtcpReportBlocks(3).size());
// Add more incoming packets and verify that they are registered in both
// access methods.
receive_statistics_->OnRtpPacket(packet1_);
IncrementSequenceNumber(&packet1_);
receive_statistics_->OnRtpPacket(packet2_);
IncrementSequenceNumber(&packet2_);
counters = receive_statistics_->GetStatistician(kSsrc1)
->GetReceiveStreamDataCounters();
EXPECT_EQ(264u, counters.transmitted.payload_bytes);
EXPECT_EQ(36u, counters.transmitted.header_bytes);
EXPECT_EQ(0u, counters.transmitted.padding_bytes);
EXPECT_EQ(3u, counters.transmitted.packets);
counters = receive_statistics_->GetStatistician(kSsrc2)
->GetReceiveStreamDataCounters();
EXPECT_EQ(864u, counters.transmitted.payload_bytes);
EXPECT_EQ(36u, counters.transmitted.header_bytes);
EXPECT_EQ(0u, counters.transmitted.padding_bytes);
EXPECT_EQ(3u, counters.transmitted.packets);
}
TEST_F(ReceiveStatisticsTest,
RtcpReportBlocksReturnsMaxBlocksWhenThereAreMoreStatisticians) {
RtpPacketReceived packet1 = CreateRtpPacket(kSsrc1, kPacketSize1);
RtpPacketReceived packet2 = CreateRtpPacket(kSsrc2, kPacketSize1);
RtpPacketReceived packet3 = CreateRtpPacket(kSsrc3, kPacketSize1);
receive_statistics_->OnRtpPacket(packet1);
receive_statistics_->OnRtpPacket(packet2);
receive_statistics_->OnRtpPacket(packet3);
EXPECT_THAT(receive_statistics_->RtcpReportBlocks(2), SizeIs(2));
EXPECT_THAT(receive_statistics_->RtcpReportBlocks(2), SizeIs(2));
EXPECT_THAT(receive_statistics_->RtcpReportBlocks(2), SizeIs(2));
}
TEST_F(ReceiveStatisticsTest,
RtcpReportBlocksReturnsAllObservedSsrcsWithMultipleCalls) {
RtpPacketReceived packet1 = CreateRtpPacket(kSsrc1, kPacketSize1);
RtpPacketReceived packet2 = CreateRtpPacket(kSsrc2, kPacketSize1);
RtpPacketReceived packet3 = CreateRtpPacket(kSsrc3, kPacketSize1);
RtpPacketReceived packet4 = CreateRtpPacket(kSsrc4, kPacketSize1);
receive_statistics_->OnRtpPacket(packet1);
receive_statistics_->OnRtpPacket(packet2);
receive_statistics_->OnRtpPacket(packet3);
receive_statistics_->OnRtpPacket(packet4);
std::vector<uint32_t> observed_ssrcs;
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(2);
ASSERT_THAT(report_blocks, SizeIs(2));
observed_ssrcs.push_back(report_blocks[0].source_ssrc());
observed_ssrcs.push_back(report_blocks[1].source_ssrc());
report_blocks = receive_statistics_->RtcpReportBlocks(2);
ASSERT_THAT(report_blocks, SizeIs(2));
observed_ssrcs.push_back(report_blocks[0].source_ssrc());
observed_ssrcs.push_back(report_blocks[1].source_ssrc());
EXPECT_THAT(observed_ssrcs,
UnorderedElementsAre(kSsrc1, kSsrc2, kSsrc3, kSsrc4));
}
TEST_F(ReceiveStatisticsTest, ActiveStatisticians) {
receive_statistics_->OnRtpPacket(packet1_);
IncrementSequenceNumber(&packet1_);
clock_.AdvanceTimeMilliseconds(1000);
receive_statistics_->OnRtpPacket(packet2_);
IncrementSequenceNumber(&packet2_);
// Nothing should time out since only 1000 ms has passed since the first
// packet came in.
EXPECT_EQ(2u, receive_statistics_->RtcpReportBlocks(3).size());
clock_.AdvanceTimeMilliseconds(7000);
// kSsrc1 should have timed out.
EXPECT_EQ(1u, receive_statistics_->RtcpReportBlocks(3).size());
clock_.AdvanceTimeMilliseconds(1000);
// kSsrc2 should have timed out.
EXPECT_EQ(0u, receive_statistics_->RtcpReportBlocks(3).size());
receive_statistics_->OnRtpPacket(packet1_);
IncrementSequenceNumber(&packet1_);
// kSsrc1 should be active again and the data counters should have survived.
EXPECT_EQ(1u, receive_statistics_->RtcpReportBlocks(3).size());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
ASSERT_TRUE(statistician != NULL);
StreamDataCounters counters = statistician->GetReceiveStreamDataCounters();
EXPECT_EQ(176u, counters.transmitted.payload_bytes);
EXPECT_EQ(24u, counters.transmitted.header_bytes);
EXPECT_EQ(0u, counters.transmitted.padding_bytes);
EXPECT_EQ(2u, counters.transmitted.packets);
}
TEST_F(ReceiveStatisticsTest,
DoesntCreateRtcpReportBlockUntilFirstReceivedPacketForSsrc) {
// Creates a statistician object for the ssrc.
receive_statistics_->EnableRetransmitDetection(kSsrc1, true);
EXPECT_TRUE(receive_statistics_->GetStatistician(kSsrc1) != nullptr);
EXPECT_EQ(0u, receive_statistics_->RtcpReportBlocks(3).size());
// Receive first packet
receive_statistics_->OnRtpPacket(packet1_);
EXPECT_EQ(1u, receive_statistics_->RtcpReportBlocks(3).size());
}
TEST_F(ReceiveStatisticsTest, GetReceiveStreamDataCounters) {
receive_statistics_->OnRtpPacket(packet1_);
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
ASSERT_TRUE(statistician != NULL);
StreamDataCounters counters = statistician->GetReceiveStreamDataCounters();
EXPECT_GT(counters.first_packet_time_ms, -1);
EXPECT_EQ(1u, counters.transmitted.packets);
receive_statistics_->OnRtpPacket(packet1_);
counters = statistician->GetReceiveStreamDataCounters();
EXPECT_GT(counters.first_packet_time_ms, -1);
EXPECT_EQ(2u, counters.transmitted.packets);
}
TEST_F(ReceiveStatisticsTest, SimpleLossComputation) {
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(3);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(4);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(5);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
// 20% = 51/255.
EXPECT_EQ(51u, report_blocks[0].fraction_lost());
EXPECT_EQ(1, report_blocks[0].cumulative_lost_signed());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
EXPECT_EQ(20, statistician->GetFractionLostInPercent());
}
TEST_F(ReceiveStatisticsTest, LossComputationWithReordering) {
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(3);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(2);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(5);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
// 20% = 51/255.
EXPECT_EQ(51u, report_blocks[0].fraction_lost());
EXPECT_EQ(1, report_blocks[0].cumulative_lost_signed());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
EXPECT_EQ(20, statistician->GetFractionLostInPercent());
}
TEST_F(ReceiveStatisticsTest, LossComputationWithDuplicates) {
// Lose 2 packets, but also receive 1 duplicate. Should actually count as
// only 1 packet being lost.
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(4);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(4);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(5);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
// 20% = 51/255.
EXPECT_EQ(51u, report_blocks[0].fraction_lost());
EXPECT_EQ(1, report_blocks[0].cumulative_lost_signed());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
EXPECT_EQ(20, statistician->GetFractionLostInPercent());
}
TEST_F(ReceiveStatisticsTest, LossComputationWithSequenceNumberWrapping) {
// First, test loss computation over a period that included a sequence number
// rollover.
packet1_.SetSequenceNumber(0xfffd);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(0);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(0xfffe);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
// Only one packet was actually lost, 0xffff.
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
// 20% = 51/255.
EXPECT_EQ(51u, report_blocks[0].fraction_lost());
EXPECT_EQ(1, report_blocks[0].cumulative_lost_signed());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
EXPECT_EQ(20, statistician->GetFractionLostInPercent());
// Now test losing one packet *after* the rollover.
packet1_.SetSequenceNumber(3);
receive_statistics_->OnRtpPacket(packet1_);
report_blocks = receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
// 50% = 127/255.
EXPECT_EQ(127u, report_blocks[0].fraction_lost());
EXPECT_EQ(2, report_blocks[0].cumulative_lost_signed());
// 2 packets lost, 7 expected
EXPECT_EQ(28, statistician->GetFractionLostInPercent());
}
TEST_F(ReceiveStatisticsTest, StreamRestartDoesntCountAsLoss) {
receive_statistics_->SetMaxReorderingThreshold(kSsrc1, 200);
packet1_.SetSequenceNumber(0);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(400);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(0, report_blocks[0].fraction_lost());
EXPECT_EQ(0, report_blocks[0].cumulative_lost_signed());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
EXPECT_EQ(0, statistician->GetFractionLostInPercent());
packet1_.SetSequenceNumber(401);
receive_statistics_->OnRtpPacket(packet1_);
report_blocks = receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(0, report_blocks[0].fraction_lost());
EXPECT_EQ(0, report_blocks[0].cumulative_lost_signed());
EXPECT_EQ(0, statistician->GetFractionLostInPercent());
}
TEST_F(ReceiveStatisticsTest, CountsLossAfterStreamRestart) {
receive_statistics_->SetMaxReorderingThreshold(kSsrc1, 200);
packet1_.SetSequenceNumber(0);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(400);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(401);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(403);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(1, report_blocks[0].cumulative_lost_signed());
StreamStatistician* statistician =
receive_statistics_->GetStatistician(kSsrc1);
// Is this reasonable? */
EXPECT_EQ(0, statistician->GetFractionLostInPercent());
}
TEST_F(ReceiveStatisticsTest, StreamCanRestartAtSequenceNumberWrapAround) {
receive_statistics_->SetMaxReorderingThreshold(kSsrc1, 200);
packet1_.SetSequenceNumber(0xffff - 401);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(0xffff - 400);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(0xffff);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(0);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(2);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(1, report_blocks[0].cumulative_lost_signed());
}
TEST_F(ReceiveStatisticsTest, StreamRestartNeedsTwoConsecutivePackets) {
receive_statistics_->SetMaxReorderingThreshold(kSsrc1, 200);
packet1_.SetSequenceNumber(400);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(401);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
packet1_.SetSequenceNumber(3);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(401u, report_blocks[0].extended_high_seq_num());
packet1_.SetSequenceNumber(4);
receive_statistics_->OnRtpPacket(packet1_);
report_blocks = receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(4u, report_blocks[0].extended_high_seq_num());
}
TEST_F(ReceiveStatisticsTest, WrapsAroundExtendedHighestSequenceNumber) {
packet1_.SetSequenceNumber(0xffff);
receive_statistics_->OnRtpPacket(packet1_);
std::vector<rtcp::ReportBlock> report_blocks =
receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(0xffffu, report_blocks[0].extended_high_seq_num());
// Wrap around.
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
report_blocks = receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(0x10001u, report_blocks[0].extended_high_seq_num());
// Should be treated as out of order; shouldn't increment highest extended
// sequence number.
packet1_.SetSequenceNumber(0x10000 - 6);
report_blocks = receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(0x10001u, report_blocks[0].extended_high_seq_num());
// Receive a couple packets then wrap around again.
receive_statistics_->SetMaxReorderingThreshold(kSsrc1, 200);
for (int i = 10; i < 0xffff; i += 150) {
packet1_.SetSequenceNumber(i);
receive_statistics_->OnRtpPacket(packet1_);
}
packet1_.SetSequenceNumber(1);
receive_statistics_->OnRtpPacket(packet1_);
report_blocks = receive_statistics_->RtcpReportBlocks(1);
ASSERT_THAT(report_blocks, SizeIs(1));
EXPECT_EQ(kSsrc1, report_blocks[0].source_ssrc());
EXPECT_EQ(0x20001u, report_blocks[0].extended_high_seq_num());
}
TEST_F(ReceiveStatisticsTest, StreamDataCounters) {
receive_statistics_ = ReceiveStatistics::Create(&clock_);
receive_statistics_->EnableRetransmitDetection(kSsrc1, true);
const size_t kHeaderLength = 20;
const size_t kPaddingLength = 9;
// One packet with payload size kPacketSize1.
RtpPacketReceived packet1 =
CreateRtpPacket(kSsrc1, kHeaderLength, kPacketSize1, 0);
receive_statistics_->OnRtpPacket(packet1);
StreamDataCounters counters = receive_statistics_->GetStatistician(kSsrc1)
->GetReceiveStreamDataCounters();
EXPECT_EQ(counters.transmitted.payload_bytes, kPacketSize1);
EXPECT_EQ(counters.transmitted.header_bytes, kHeaderLength);
EXPECT_EQ(counters.transmitted.padding_bytes, 0u);
EXPECT_EQ(counters.transmitted.packets, 1u);
EXPECT_EQ(counters.retransmitted.payload_bytes, 0u);
EXPECT_EQ(counters.retransmitted.header_bytes, 0u);
EXPECT_EQ(counters.retransmitted.padding_bytes, 0u);
EXPECT_EQ(counters.retransmitted.packets, 0u);
EXPECT_EQ(counters.fec.packets, 0u);
// Another packet of size kPacketSize1 with 9 bytes padding.
RtpPacketReceived packet2 =
CreateRtpPacket(kSsrc1, kHeaderLength, kPacketSize1, 9);
packet2.SetSequenceNumber(packet1.SequenceNumber() + 1);
clock_.AdvanceTimeMilliseconds(5);
receive_statistics_->OnRtpPacket(packet2);
counters = receive_statistics_->GetStatistician(kSsrc1)
->GetReceiveStreamDataCounters();
EXPECT_EQ(counters.transmitted.payload_bytes, kPacketSize1 * 2);
EXPECT_EQ(counters.transmitted.header_bytes, kHeaderLength * 2);
EXPECT_EQ(counters.transmitted.padding_bytes, kPaddingLength);
EXPECT_EQ(counters.transmitted.packets, 2u);
clock_.AdvanceTimeMilliseconds(5);
// Retransmit last packet.
receive_statistics_->OnRtpPacket(packet2);
counters = receive_statistics_->GetStatistician(kSsrc1)
->GetReceiveStreamDataCounters();
EXPECT_EQ(counters.transmitted.payload_bytes, kPacketSize1 * 3);
EXPECT_EQ(counters.transmitted.header_bytes, kHeaderLength * 3);
EXPECT_EQ(counters.transmitted.padding_bytes, kPaddingLength * 2);
EXPECT_EQ(counters.transmitted.packets, 3u);
EXPECT_EQ(counters.retransmitted.payload_bytes, kPacketSize1);
EXPECT_EQ(counters.retransmitted.header_bytes, kHeaderLength);
EXPECT_EQ(counters.retransmitted.padding_bytes, kPaddingLength);
EXPECT_EQ(counters.retransmitted.packets, 1u);
}
TEST_F(ReceiveStatisticsTest, LastPacketReceivedTimestamp) {
receive_statistics_ = ReceiveStatistics::Create(&clock_);
clock_.AdvanceTimeMilliseconds(42);
receive_statistics_->OnRtpPacket(packet1_);
StreamDataCounters counters = receive_statistics_->GetStatistician(kSsrc1)
->GetReceiveStreamDataCounters();
EXPECT_EQ(42, counters.last_packet_received_timestamp_ms);
clock_.AdvanceTimeMilliseconds(3);
receive_statistics_->OnRtpPacket(packet1_);
counters = receive_statistics_->GetStatistician(kSsrc1)
->GetReceiveStreamDataCounters();
EXPECT_EQ(45, counters.last_packet_received_timestamp_ms);
}
} // namespace
} // namespace webrtc