| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/refined_filter_update_gain.h" |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <string> |
| #include <vector> |
| |
| #include "modules/audio_processing/aec3/adaptive_fir_filter.h" |
| #include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h" |
| #include "modules/audio_processing/aec3/aec_state.h" |
| #include "modules/audio_processing/aec3/coarse_filter_update_gain.h" |
| #include "modules/audio_processing/aec3/render_delay_buffer.h" |
| #include "modules/audio_processing/aec3/render_signal_analyzer.h" |
| #include "modules/audio_processing/aec3/subtractor_output.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "modules/audio_processing/test/echo_canceller_test_tools.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "rtc_base/random.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| // Method for performing the simulations needed to test the refined filter |
| // update gain functionality. |
| void RunFilterUpdateTest(int num_blocks_to_process, |
| size_t delay_samples, |
| int filter_length_blocks, |
| const std::vector<int>& blocks_with_echo_path_changes, |
| const std::vector<int>& blocks_with_saturation, |
| bool use_silent_render_in_second_half, |
| std::array<float, kBlockSize>* e_last_block, |
| std::array<float, kBlockSize>* y_last_block, |
| FftData* G_last_block) { |
| ApmDataDumper data_dumper(42); |
| Aec3Optimization optimization = DetectOptimization(); |
| constexpr size_t kNumRenderChannels = 1; |
| constexpr size_t kNumCaptureChannels = 1; |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| |
| EchoCanceller3Config config; |
| config.filter.refined.length_blocks = filter_length_blocks; |
| config.filter.coarse.length_blocks = filter_length_blocks; |
| AdaptiveFirFilter refined_filter( |
| config.filter.refined.length_blocks, config.filter.refined.length_blocks, |
| config.filter.config_change_duration_blocks, kNumRenderChannels, |
| optimization, &data_dumper); |
| AdaptiveFirFilter coarse_filter( |
| config.filter.coarse.length_blocks, config.filter.coarse.length_blocks, |
| config.filter.config_change_duration_blocks, kNumRenderChannels, |
| optimization, &data_dumper); |
| std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> H2( |
| kNumCaptureChannels, std::vector<std::array<float, kFftLengthBy2Plus1>>( |
| refined_filter.max_filter_size_partitions(), |
| std::array<float, kFftLengthBy2Plus1>())); |
| for (auto& H2_ch : H2) { |
| for (auto& H2_k : H2_ch) { |
| H2_k.fill(0.f); |
| } |
| } |
| std::vector<std::vector<float>> h( |
| kNumCaptureChannels, |
| std::vector<float>( |
| GetTimeDomainLength(refined_filter.max_filter_size_partitions()), |
| 0.f)); |
| |
| Aec3Fft fft; |
| std::array<float, kBlockSize> x_old; |
| x_old.fill(0.f); |
| CoarseFilterUpdateGain coarse_gain( |
| config.filter.coarse, config.filter.config_change_duration_blocks); |
| RefinedFilterUpdateGain refined_gain( |
| config.filter.refined, config.filter.config_change_duration_blocks); |
| Random random_generator(42U); |
| std::vector<std::vector<std::vector<float>>> x( |
| kNumBands, std::vector<std::vector<float>>( |
| kNumRenderChannels, std::vector<float>(kBlockSize, 0.f))); |
| std::vector<float> y(kBlockSize, 0.f); |
| config.delay.default_delay = 1; |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels)); |
| AecState aec_state(config, kNumCaptureChannels); |
| RenderSignalAnalyzer render_signal_analyzer(config); |
| absl::optional<DelayEstimate> delay_estimate; |
| std::array<float, kFftLength> s_scratch; |
| std::array<float, kBlockSize> s; |
| FftData S; |
| FftData G; |
| std::vector<SubtractorOutput> output(kNumCaptureChannels); |
| for (auto& subtractor_output : output) { |
| subtractor_output.Reset(); |
| } |
| FftData& E_refined = output[0].E_refined; |
| FftData E_coarse; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined( |
| kNumCaptureChannels); |
| std::array<float, kBlockSize>& e_refined = output[0].e_refined; |
| std::array<float, kBlockSize>& e_coarse = output[0].e_coarse; |
| for (auto& Y2_ch : Y2) { |
| Y2_ch.fill(0.f); |
| } |
| |
| constexpr float kScale = 1.0f / kFftLengthBy2; |
| |
| DelayBuffer<float> delay_buffer(delay_samples); |
| for (int k = 0; k < num_blocks_to_process; ++k) { |
| // Handle echo path changes. |
| if (std::find(blocks_with_echo_path_changes.begin(), |
| blocks_with_echo_path_changes.end(), |
| k) != blocks_with_echo_path_changes.end()) { |
| refined_filter.HandleEchoPathChange(); |
| } |
| |
| // Handle saturation. |
| const bool saturation = |
| std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(), |
| k) != blocks_with_saturation.end(); |
| |
| // Create the render signal. |
| if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) { |
| for (size_t band = 0; band < x.size(); ++band) { |
| for (size_t channel = 0; channel < x[band].size(); ++channel) { |
| std::fill(x[band][channel].begin(), x[band][channel].end(), 0.f); |
| } |
| } |
| } else { |
| for (size_t band = 0; band < x.size(); ++band) { |
| for (size_t channel = 0; channel < x[band].size(); ++channel) { |
| RandomizeSampleVector(&random_generator, x[band][channel]); |
| } |
| } |
| } |
| delay_buffer.Delay(x[0][0], y); |
| |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| |
| render_signal_analyzer.Update(*render_delay_buffer->GetRenderBuffer(), |
| aec_state.MinDirectPathFilterDelay()); |
| |
| // Apply the refined filter. |
| refined_filter.Filter(*render_delay_buffer->GetRenderBuffer(), &S); |
| fft.Ifft(S, &s_scratch); |
| std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, |
| e_refined.begin(), |
| [&](float a, float b) { return a - b * kScale; }); |
| std::for_each(e_refined.begin(), e_refined.end(), |
| [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); |
| fft.ZeroPaddedFft(e_refined, Aec3Fft::Window::kRectangular, &E_refined); |
| for (size_t k = 0; k < kBlockSize; ++k) { |
| s[k] = kScale * s_scratch[k + kFftLengthBy2]; |
| } |
| |
| // Apply the coarse filter. |
| coarse_filter.Filter(*render_delay_buffer->GetRenderBuffer(), &S); |
| fft.Ifft(S, &s_scratch); |
| std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, |
| e_coarse.begin(), |
| [&](float a, float b) { return a - b * kScale; }); |
| std::for_each(e_coarse.begin(), e_coarse.end(), |
| [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); |
| fft.ZeroPaddedFft(e_coarse, Aec3Fft::Window::kRectangular, &E_coarse); |
| |
| // Compute spectra for future use. |
| E_refined.Spectrum(Aec3Optimization::kNone, output[0].E2_refined); |
| E_coarse.Spectrum(Aec3Optimization::kNone, output[0].E2_coarse); |
| |
| // Adapt the coarse filter. |
| std::array<float, kFftLengthBy2Plus1> render_power; |
| render_delay_buffer->GetRenderBuffer()->SpectralSum( |
| coarse_filter.SizePartitions(), &render_power); |
| coarse_gain.Compute(render_power, render_signal_analyzer, E_coarse, |
| coarse_filter.SizePartitions(), saturation, &G); |
| coarse_filter.Adapt(*render_delay_buffer->GetRenderBuffer(), G); |
| |
| // Adapt the refined filter |
| render_delay_buffer->GetRenderBuffer()->SpectralSum( |
| refined_filter.SizePartitions(), &render_power); |
| |
| std::array<float, kFftLengthBy2Plus1> erl; |
| ComputeErl(optimization, H2[0], erl); |
| refined_gain.Compute(render_power, render_signal_analyzer, output[0], erl, |
| refined_filter.SizePartitions(), saturation, false, |
| &G); |
| refined_filter.Adapt(*render_delay_buffer->GetRenderBuffer(), G, &h[0]); |
| |
| // Update the delay. |
| aec_state.HandleEchoPathChange(EchoPathVariability( |
| false, EchoPathVariability::DelayAdjustment::kNone, false)); |
| refined_filter.ComputeFrequencyResponse(&H2[0]); |
| std::copy(output[0].E2_refined.begin(), output[0].E2_refined.end(), |
| E2_refined[0].begin()); |
| aec_state.Update(delay_estimate, H2, h, |
| *render_delay_buffer->GetRenderBuffer(), E2_refined, Y2, |
| output); |
| } |
| |
| std::copy(e_refined.begin(), e_refined.end(), e_last_block->begin()); |
| std::copy(y.begin(), y.end(), y_last_block->begin()); |
| std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin()); |
| std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin()); |
| } |
| |
| std::string ProduceDebugText(int filter_length_blocks) { |
| rtc::StringBuilder ss; |
| ss << "Length: " << filter_length_blocks; |
| return ss.Release(); |
| } |
| |
| std::string ProduceDebugText(size_t delay, int filter_length_blocks) { |
| rtc::StringBuilder ss; |
| ss << "Delay: " << delay << ", "; |
| ss << ProduceDebugText(filter_length_blocks); |
| return ss.Release(); |
| } |
| |
| } // namespace |
| |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| |
| // Verifies that the check for non-null output gain parameter works. |
| TEST(RefinedFilterUpdateGainDeathTest, NullDataOutputGain) { |
| ApmDataDumper data_dumper(42); |
| EchoCanceller3Config config; |
| RenderSignalAnalyzer analyzer(config); |
| SubtractorOutput output; |
| RefinedFilterUpdateGain gain(config.filter.refined, |
| config.filter.config_change_duration_blocks); |
| std::array<float, kFftLengthBy2Plus1> render_power; |
| render_power.fill(0.f); |
| std::array<float, kFftLengthBy2Plus1> erl; |
| erl.fill(0.f); |
| EXPECT_DEATH( |
| gain.Compute(render_power, analyzer, output, erl, |
| config.filter.refined.length_blocks, false, false, nullptr), |
| ""); |
| } |
| |
| #endif |
| |
| // Verifies that the gain formed causes the filter using it to converge. |
| TEST(RefinedFilterUpdateGain, GainCausesFilterToConverge) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| for (size_t filter_length_blocks : {12, 20, 30}) { |
| for (size_t delay_samples : {0, 64, 150, 200, 301}) { |
| SCOPED_TRACE(ProduceDebugText(delay_samples, filter_length_blocks)); |
| |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G; |
| |
| RunFilterUpdateTest(600, delay_samples, filter_length_blocks, |
| blocks_with_echo_path_changes, blocks_with_saturation, |
| false, &e, &y, &G); |
| |
| // Verify that the refined filter is able to perform well. |
| // Use different criteria to take overmodelling into account. |
| if (filter_length_blocks == 12) { |
| EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f), |
| std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); |
| } else { |
| EXPECT_LT(std::inner_product(e.begin(), e.end(), e.begin(), 0.f), |
| std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); |
| } |
| } |
| } |
| } |
| |
| // Verifies that the magnitude of the gain on average decreases for a |
| // persistently exciting signal. |
| TEST(RefinedFilterUpdateGain, DecreasingGain) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G_a; |
| FftData G_b; |
| FftData G_c; |
| std::array<float, kFftLengthBy2Plus1> G_a_power; |
| std::array<float, kFftLengthBy2Plus1> G_b_power; |
| std::array<float, kFftLengthBy2Plus1> G_c_power; |
| |
| RunFilterUpdateTest(250, 65, 12, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_a); |
| RunFilterUpdateTest(500, 65, 12, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_b); |
| RunFilterUpdateTest(750, 65, 12, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_c); |
| |
| G_a.Spectrum(Aec3Optimization::kNone, G_a_power); |
| G_b.Spectrum(Aec3Optimization::kNone, G_b_power); |
| G_c.Spectrum(Aec3Optimization::kNone, G_c_power); |
| |
| EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
| std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
| |
| EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.), |
| std::accumulate(G_c_power.begin(), G_c_power.end(), 0.)); |
| } |
| |
| // Verifies that the gain is zero when there is saturation and that the internal |
| // error estimates cause the gain to increase after a period of saturation. |
| TEST(RefinedFilterUpdateGain, SaturationBehavior) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| for (int k = 99; k < 200; ++k) { |
| blocks_with_saturation.push_back(k); |
| } |
| |
| for (size_t filter_length_blocks : {12, 20, 30}) { |
| SCOPED_TRACE(ProduceDebugText(filter_length_blocks)); |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G_a; |
| FftData G_b; |
| FftData G_a_ref; |
| G_a_ref.re.fill(0.f); |
| G_a_ref.im.fill(0.f); |
| |
| std::array<float, kFftLengthBy2Plus1> G_a_power; |
| std::array<float, kFftLengthBy2Plus1> G_b_power; |
| |
| RunFilterUpdateTest(100, 65, filter_length_blocks, |
| blocks_with_echo_path_changes, blocks_with_saturation, |
| false, &e, &y, &G_a); |
| |
| EXPECT_EQ(G_a_ref.re, G_a.re); |
| EXPECT_EQ(G_a_ref.im, G_a.im); |
| |
| RunFilterUpdateTest(99, 65, filter_length_blocks, |
| blocks_with_echo_path_changes, blocks_with_saturation, |
| false, &e, &y, &G_a); |
| RunFilterUpdateTest(201, 65, filter_length_blocks, |
| blocks_with_echo_path_changes, blocks_with_saturation, |
| false, &e, &y, &G_b); |
| |
| G_a.Spectrum(Aec3Optimization::kNone, G_a_power); |
| G_b.Spectrum(Aec3Optimization::kNone, G_b_power); |
| |
| EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
| std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
| } |
| } |
| |
| // Verifies that the gain increases after an echo path change. |
| // TODO(peah): Correct and reactivate this test. |
| TEST(RefinedFilterUpdateGain, DISABLED_EchoPathChangeBehavior) { |
| for (size_t filter_length_blocks : {12, 20, 30}) { |
| SCOPED_TRACE(ProduceDebugText(filter_length_blocks)); |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| blocks_with_echo_path_changes.push_back(99); |
| |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G_a; |
| FftData G_b; |
| std::array<float, kFftLengthBy2Plus1> G_a_power; |
| std::array<float, kFftLengthBy2Plus1> G_b_power; |
| |
| RunFilterUpdateTest(100, 65, filter_length_blocks, |
| blocks_with_echo_path_changes, blocks_with_saturation, |
| false, &e, &y, &G_a); |
| RunFilterUpdateTest(101, 65, filter_length_blocks, |
| blocks_with_echo_path_changes, blocks_with_saturation, |
| false, &e, &y, &G_b); |
| |
| G_a.Spectrum(Aec3Optimization::kNone, G_a_power); |
| G_b.Spectrum(Aec3Optimization::kNone, G_b_power); |
| |
| EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
| std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
| } |
| } |
| |
| } // namespace webrtc |