| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/suppression_gain.h" |
| |
| #include <math.h> |
| #include <stddef.h> |
| |
| #include <algorithm> |
| #include <numeric> |
| |
| #include "modules/audio_processing/aec3/dominant_nearend_detector.h" |
| #include "modules/audio_processing/aec3/moving_average.h" |
| #include "modules/audio_processing/aec3/subband_nearend_detector.h" |
| #include "modules/audio_processing/aec3/vector_math.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/atomic_ops.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| void LimitLowFrequencyGains(std::array<float, kFftLengthBy2Plus1>* gain) { |
| // Limit the low frequency gains to avoid the impact of the high-pass filter |
| // on the lower-frequency gain influencing the overall achieved gain. |
| (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]); |
| } |
| |
| void LimitHighFrequencyGains(bool conservative_hf_suppression, |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| // Limit the high frequency gains to avoid echo leakage due to an imperfect |
| // filter. |
| constexpr size_t kFirstBandToLimit = (64 * 2000) / 8000; |
| const float min_upper_gain = (*gain)[kFirstBandToLimit]; |
| std::for_each( |
| gain->begin() + kFirstBandToLimit + 1, gain->end(), |
| [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); }); |
| (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1]; |
| |
| if (conservative_hf_suppression) { |
| // Limits the gain in the frequencies for which the adaptive filter has not |
| // converged. |
| // TODO(peah): Make adaptive to take the actual filter error into account. |
| constexpr size_t kUpperAccurateBandPlus1 = 29; |
| |
| constexpr float oneByBandsInSum = |
| 1 / static_cast<float>(kUpperAccurateBandPlus1 - 20); |
| const float hf_gain_bound = |
| std::accumulate(gain->begin() + 20, |
| gain->begin() + kUpperAccurateBandPlus1, 0.f) * |
| oneByBandsInSum; |
| |
| std::for_each( |
| gain->begin() + kUpperAccurateBandPlus1, gain->end(), |
| [hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); }); |
| } |
| } |
| |
| // Scales the echo according to assessed audibility at the other end. |
| void WeightEchoForAudibility(const EchoCanceller3Config& config, |
| rtc::ArrayView<const float> echo, |
| rtc::ArrayView<float> weighted_echo) { |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size()); |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size()); |
| |
| auto weigh = [](float threshold, float normalizer, size_t begin, size_t end, |
| rtc::ArrayView<const float> echo, |
| rtc::ArrayView<float> weighted_echo) { |
| for (size_t k = begin; k < end; ++k) { |
| if (echo[k] < threshold) { |
| float tmp = (threshold - echo[k]) * normalizer; |
| weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp); |
| } else { |
| weighted_echo[k] = echo[k]; |
| } |
| } |
| }; |
| |
| float threshold = config.echo_audibility.floor_power * |
| config.echo_audibility.audibility_threshold_lf; |
| float normalizer = 1.f / (threshold - config.echo_audibility.floor_power); |
| weigh(threshold, normalizer, 0, 3, echo, weighted_echo); |
| |
| threshold = config.echo_audibility.floor_power * |
| config.echo_audibility.audibility_threshold_mf; |
| normalizer = 1.f / (threshold - config.echo_audibility.floor_power); |
| weigh(threshold, normalizer, 3, 7, echo, weighted_echo); |
| |
| threshold = config.echo_audibility.floor_power * |
| config.echo_audibility.audibility_threshold_hf; |
| normalizer = 1.f / (threshold - config.echo_audibility.floor_power); |
| weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo); |
| } |
| |
| } // namespace |
| |
| int SuppressionGain::instance_count_ = 0; |
| |
| float SuppressionGain::UpperBandsGain( |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> |
| comfort_noise_spectrum, |
| const absl::optional<int>& narrow_peak_band, |
| bool saturated_echo, |
| const std::vector<std::vector<std::vector<float>>>& render, |
| const std::array<float, kFftLengthBy2Plus1>& low_band_gain) const { |
| RTC_DCHECK_LT(0, render.size()); |
| if (render.size() == 1) { |
| return 1.f; |
| } |
| const size_t num_render_channels = render[0].size(); |
| |
| if (narrow_peak_band && |
| (*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) { |
| return 0.001f; |
| } |
| |
| constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2; |
| const float gain_below_8_khz = *std::min_element( |
| low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end()); |
| |
| // Always attenuate the upper bands when there is saturated echo. |
| if (saturated_echo) { |
| return std::min(0.001f, gain_below_8_khz); |
| } |
| |
| // Compute the upper and lower band energies. |
| const auto sum_of_squares = [](float a, float b) { return a + b * b; }; |
| float low_band_energy = 0.f; |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const float channel_energy = std::accumulate( |
| render[0][0].begin(), render[0][0].end(), 0.f, sum_of_squares); |
| low_band_energy = std::max(low_band_energy, channel_energy); |
| } |
| float high_band_energy = 0.f; |
| for (size_t k = 1; k < render.size(); ++k) { |
| for (size_t ch = 0; ch < num_render_channels; ++ch) { |
| const float energy = std::accumulate( |
| render[k][ch].begin(), render[k][ch].end(), 0.f, sum_of_squares); |
| high_band_energy = std::max(high_band_energy, energy); |
| } |
| } |
| |
| // If there is more power in the lower frequencies than the upper frequencies, |
| // or if the power in upper frequencies is low, do not bound the gain in the |
| // upper bands. |
| float anti_howling_gain; |
| const float activation_threshold = |
| kBlockSize * config_.suppressor.high_bands_suppression |
| .anti_howling_activation_threshold; |
| if (high_band_energy < std::max(low_band_energy, activation_threshold)) { |
| anti_howling_gain = 1.f; |
| } else { |
| // In all other cases, bound the gain for upper frequencies. |
| RTC_DCHECK_LE(low_band_energy, high_band_energy); |
| RTC_DCHECK_NE(0.f, high_band_energy); |
| anti_howling_gain = |
| config_.suppressor.high_bands_suppression.anti_howling_gain * |
| sqrtf(low_band_energy / high_band_energy); |
| } |
| |
| float gain_bound = 1.f; |
| if (!dominant_nearend_detector_->IsNearendState()) { |
| // Bound the upper gain during significant echo activity. |
| const auto& cfg = config_.suppressor.high_bands_suppression; |
| auto low_frequency_energy = [](rtc::ArrayView<const float> spectrum) { |
| RTC_DCHECK_LE(16, spectrum.size()); |
| return std::accumulate(spectrum.begin() + 1, spectrum.begin() + 16, 0.f); |
| }; |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| const float echo_sum = low_frequency_energy(echo_spectrum[ch]); |
| const float noise_sum = low_frequency_energy(comfort_noise_spectrum[ch]); |
| if (echo_sum > cfg.enr_threshold * noise_sum) { |
| gain_bound = cfg.max_gain_during_echo; |
| break; |
| } |
| } |
| } |
| |
| // Choose the gain as the minimum of the lower and upper gains. |
| return std::min(std::min(gain_below_8_khz, anti_howling_gain), gain_bound); |
| } |
| |
| // Computes the gain to reduce the echo to a non audible level. |
| void SuppressionGain::GainToNoAudibleEcho( |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& echo, |
| const std::array<float, kFftLengthBy2Plus1>& masker, |
| std::array<float, kFftLengthBy2Plus1>* gain) const { |
| const auto& p = dominant_nearend_detector_->IsNearendState() ? nearend_params_ |
| : normal_params_; |
| for (size_t k = 0; k < gain->size(); ++k) { |
| float enr = echo[k] / (nearend[k] + 1.f); // Echo-to-nearend ratio. |
| float emr = echo[k] / (masker[k] + 1.f); // Echo-to-masker (noise) ratio. |
| float g = 1.0f; |
| if (enr > p.enr_transparent_[k] && emr > p.emr_transparent_[k]) { |
| g = (p.enr_suppress_[k] - enr) / |
| (p.enr_suppress_[k] - p.enr_transparent_[k]); |
| g = std::max(g, p.emr_transparent_[k] / emr); |
| } |
| (*gain)[k] = g; |
| } |
| } |
| |
| // Compute the minimum gain as the attenuating gain to put the signal just |
| // above the zero sample values. |
| void SuppressionGain::GetMinGain( |
| rtc::ArrayView<const float> weighted_residual_echo, |
| rtc::ArrayView<const float> last_nearend, |
| rtc::ArrayView<const float> last_echo, |
| bool low_noise_render, |
| bool saturated_echo, |
| rtc::ArrayView<float> min_gain) const { |
| if (!saturated_echo) { |
| const float min_echo_power = |
| low_noise_render ? config_.echo_audibility.low_render_limit |
| : config_.echo_audibility.normal_render_limit; |
| |
| for (size_t k = 0; k < min_gain.size(); ++k) { |
| min_gain[k] = weighted_residual_echo[k] > 0.f |
| ? min_echo_power / weighted_residual_echo[k] |
| : 1.f; |
| min_gain[k] = std::min(min_gain[k], 1.f); |
| } |
| |
| if (!initial_state_ || |
| config_.suppressor.lf_smoothing_during_initial_phase) { |
| const float& dec = dominant_nearend_detector_->IsNearendState() |
| ? nearend_params_.max_dec_factor_lf |
| : normal_params_.max_dec_factor_lf; |
| |
| for (int k = 0; k <= config_.suppressor.last_lf_smoothing_band; ++k) { |
| // Make sure the gains of the low frequencies do not decrease too |
| // quickly after strong nearend. |
| if (last_nearend[k] > last_echo[k] || |
| k <= config_.suppressor.last_permanent_lf_smoothing_band) { |
| min_gain[k] = std::max(min_gain[k], last_gain_[k] * dec); |
| min_gain[k] = std::min(min_gain[k], 1.f); |
| } |
| } |
| } |
| } else { |
| std::fill(min_gain.begin(), min_gain.end(), 0.f); |
| } |
| } |
| |
| // Compute the maximum gain by limiting the gain increase from the previous |
| // gain. |
| void SuppressionGain::GetMaxGain(rtc::ArrayView<float> max_gain) const { |
| const auto& inc = dominant_nearend_detector_->IsNearendState() |
| ? nearend_params_.max_inc_factor |
| : normal_params_.max_inc_factor; |
| const auto& floor = config_.suppressor.floor_first_increase; |
| for (size_t k = 0; k < max_gain.size(); ++k) { |
| max_gain[k] = std::min(std::max(last_gain_[k] * inc, floor), 1.f); |
| } |
| } |
| |
| void SuppressionGain::LowerBandGain( |
| bool low_noise_render, |
| const AecState& aec_state, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> |
| suppressor_input, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> residual_echo, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> comfort_noise, |
| bool clock_drift, |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| gain->fill(1.f); |
| const bool saturated_echo = aec_state.SaturatedEcho(); |
| std::array<float, kFftLengthBy2Plus1> max_gain; |
| GetMaxGain(max_gain); |
| |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| std::array<float, kFftLengthBy2Plus1> G; |
| std::array<float, kFftLengthBy2Plus1> nearend; |
| nearend_smoothers_[ch].Average(suppressor_input[ch], nearend); |
| |
| // Weight echo power in terms of audibility. |
| std::array<float, kFftLengthBy2Plus1> weighted_residual_echo; |
| WeightEchoForAudibility(config_, residual_echo[ch], weighted_residual_echo); |
| |
| std::array<float, kFftLengthBy2Plus1> min_gain; |
| GetMinGain(weighted_residual_echo, last_nearend_[ch], last_echo_[ch], |
| low_noise_render, saturated_echo, min_gain); |
| |
| GainToNoAudibleEcho(nearend, weighted_residual_echo, comfort_noise[0], &G); |
| |
| // Clamp gains. |
| for (size_t k = 0; k < gain->size(); ++k) { |
| G[k] = std::max(std::min(G[k], max_gain[k]), min_gain[k]); |
| (*gain)[k] = std::min((*gain)[k], G[k]); |
| } |
| |
| // Store data required for the gain computation of the next block. |
| std::copy(nearend.begin(), nearend.end(), last_nearend_[ch].begin()); |
| std::copy(weighted_residual_echo.begin(), weighted_residual_echo.end(), |
| last_echo_[ch].begin()); |
| } |
| |
| LimitLowFrequencyGains(gain); |
| // Use conservative high-frequency gains during clock-drift or when not in |
| // dominant nearend. |
| if (!dominant_nearend_detector_->IsNearendState() || clock_drift || |
| config_.suppressor.conservative_hf_suppression) { |
| LimitHighFrequencyGains(config_.suppressor.conservative_hf_suppression, |
| gain); |
| } |
| |
| // Store computed gains. |
| std::copy(gain->begin(), gain->end(), last_gain_.begin()); |
| |
| // Transform gains to amplitude domain. |
| aec3::VectorMath(optimization_).Sqrt(*gain); |
| } |
| |
| SuppressionGain::SuppressionGain(const EchoCanceller3Config& config, |
| Aec3Optimization optimization, |
| int sample_rate_hz, |
| size_t num_capture_channels) |
| : data_dumper_( |
| new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), |
| optimization_(optimization), |
| config_(config), |
| num_capture_channels_(num_capture_channels), |
| state_change_duration_blocks_( |
| static_cast<int>(config_.filter.config_change_duration_blocks)), |
| last_nearend_(num_capture_channels_, {0}), |
| last_echo_(num_capture_channels_, {0}), |
| nearend_smoothers_( |
| num_capture_channels_, |
| aec3::MovingAverage(kFftLengthBy2Plus1, |
| config.suppressor.nearend_average_blocks)), |
| nearend_params_(config_.suppressor.last_lf_band, |
| config_.suppressor.first_hf_band, |
| config_.suppressor.nearend_tuning), |
| normal_params_(config_.suppressor.last_lf_band, |
| config_.suppressor.first_hf_band, |
| config_.suppressor.normal_tuning) { |
| RTC_DCHECK_LT(0, state_change_duration_blocks_); |
| last_gain_.fill(1.f); |
| if (config_.suppressor.use_subband_nearend_detection) { |
| dominant_nearend_detector_ = std::make_unique<SubbandNearendDetector>( |
| config_.suppressor.subband_nearend_detection, num_capture_channels_); |
| } else { |
| dominant_nearend_detector_ = std::make_unique<DominantNearendDetector>( |
| config_.suppressor.dominant_nearend_detection, num_capture_channels_); |
| } |
| RTC_DCHECK(dominant_nearend_detector_); |
| } |
| |
| SuppressionGain::~SuppressionGain() = default; |
| |
| void SuppressionGain::GetGain( |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> |
| nearend_spectrum, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> |
| residual_echo_spectrum, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> |
| comfort_noise_spectrum, |
| const RenderSignalAnalyzer& render_signal_analyzer, |
| const AecState& aec_state, |
| const std::vector<std::vector<std::vector<float>>>& render, |
| bool clock_drift, |
| float* high_bands_gain, |
| std::array<float, kFftLengthBy2Plus1>* low_band_gain) { |
| RTC_DCHECK(high_bands_gain); |
| RTC_DCHECK(low_band_gain); |
| |
| // Update the nearend state selection. |
| dominant_nearend_detector_->Update(nearend_spectrum, residual_echo_spectrum, |
| comfort_noise_spectrum, initial_state_); |
| |
| // Compute gain for the lower band. |
| bool low_noise_render = low_render_detector_.Detect(render); |
| LowerBandGain(low_noise_render, aec_state, nearend_spectrum, |
| residual_echo_spectrum, comfort_noise_spectrum, clock_drift, |
| low_band_gain); |
| |
| // Compute the gain for the upper bands. |
| const absl::optional<int> narrow_peak_band = |
| render_signal_analyzer.NarrowPeakBand(); |
| |
| *high_bands_gain = |
| UpperBandsGain(echo_spectrum, comfort_noise_spectrum, narrow_peak_band, |
| aec_state.SaturatedEcho(), render, *low_band_gain); |
| } |
| |
| void SuppressionGain::SetInitialState(bool state) { |
| initial_state_ = state; |
| if (state) { |
| initial_state_change_counter_ = state_change_duration_blocks_; |
| } else { |
| initial_state_change_counter_ = 0; |
| } |
| } |
| |
| // Detects when the render signal can be considered to have low power and |
| // consist of stationary noise. |
| bool SuppressionGain::LowNoiseRenderDetector::Detect( |
| const std::vector<std::vector<std::vector<float>>>& render) { |
| float x2_sum = 0.f; |
| float x2_max = 0.f; |
| for (const auto& x_ch : render[0]) { |
| for (const auto& x_k : x_ch) { |
| const float x2 = x_k * x_k; |
| x2_sum += x2; |
| x2_max = std::max(x2_max, x2); |
| } |
| } |
| const size_t num_render_channels = render[0].size(); |
| x2_sum = x2_sum / num_render_channels; |
| ; |
| |
| constexpr float kThreshold = 50.f * 50.f * 64.f; |
| const bool low_noise_render = |
| average_power_ < kThreshold && x2_max < 3 * average_power_; |
| average_power_ = average_power_ * 0.9f + x2_sum * 0.1f; |
| return low_noise_render; |
| } |
| |
| SuppressionGain::GainParameters::GainParameters( |
| int last_lf_band, |
| int first_hf_band, |
| const EchoCanceller3Config::Suppressor::Tuning& tuning) |
| : max_inc_factor(tuning.max_inc_factor), |
| max_dec_factor_lf(tuning.max_dec_factor_lf) { |
| // Compute per-band masking thresholds. |
| RTC_DCHECK_LT(last_lf_band, first_hf_band); |
| auto& lf = tuning.mask_lf; |
| auto& hf = tuning.mask_hf; |
| RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress); |
| RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress); |
| for (int k = 0; k < static_cast<int>(kFftLengthBy2Plus1); k++) { |
| float a; |
| if (k <= last_lf_band) { |
| a = 0.f; |
| } else if (k < first_hf_band) { |
| a = (k - last_lf_band) / static_cast<float>(first_hf_band - last_lf_band); |
| } else { |
| a = 1.f; |
| } |
| enr_transparent_[k] = (1 - a) * lf.enr_transparent + a * hf.enr_transparent; |
| enr_suppress_[k] = (1 - a) * lf.enr_suppress + a * hf.enr_suppress; |
| emr_transparent_[k] = (1 - a) * lf.emr_transparent + a * hf.emr_transparent; |
| } |
| } |
| |
| } // namespace webrtc |