blob: ff7022dba41bb28f0d7e24a1c941cf75794e777a [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/utility/cascaded_biquad_filter.h"
#include <vector>
#include "test/gtest.h"
namespace webrtc {
namespace {
// Coefficients for a second order Butterworth high-pass filter with cutoff
// frequency 100 Hz.
const CascadedBiQuadFilter::BiQuadCoefficients kHighPassFilterCoefficients = {
{0.97261f, -1.94523f, 0.97261f},
{-1.94448f, 0.94598f}};
const CascadedBiQuadFilter::BiQuadCoefficients kTransparentCoefficients = {
{1.f, 0.f, 0.f},
{0.f, 0.f}};
const CascadedBiQuadFilter::BiQuadCoefficients kBlockingCoefficients = {
{0.f, 0.f, 0.f},
{0.f, 0.f}};
std::vector<float> CreateInputWithIncreasingValues(size_t vector_length) {
std::vector<float> v(vector_length);
for (size_t k = 0; k < v.size(); ++k) {
v[k] = k;
}
return v;
}
} // namespace
// Verifies that the filter applies an effect which removes the input signal.
// The test also verifies that the in-place Process API call works as intended.
TEST(CascadedBiquadFilter, BlockingConfiguration) {
std::vector<float> values = CreateInputWithIncreasingValues(1000);
CascadedBiQuadFilter filter(kBlockingCoefficients, 1);
filter.Process(values);
EXPECT_EQ(std::vector<float>(1000, 0.f), values);
}
// Verifies that the filter is able to form a zero-mean output from a
// non-zeromean input signal when coefficients for a high-pass filter are
// applied. The test also verifies that the filter works with multiple biquads.
TEST(CascadedBiquadFilter, HighPassConfiguration) {
std::vector<float> values(1000);
for (size_t k = 0; k < values.size(); ++k) {
values[k] = 1.f;
}
CascadedBiQuadFilter filter(kHighPassFilterCoefficients, 2);
filter.Process(values);
for (size_t k = values.size() / 2; k < values.size(); ++k) {
EXPECT_NEAR(0.f, values[k], 1e-4);
}
}
// Verifies that the reset functionality works as intended.
TEST(CascadedBiquadFilter, HighPassConfigurationResetFunctionality) {
CascadedBiQuadFilter filter(kHighPassFilterCoefficients, 2);
std::vector<float> values1(100, 1.f);
filter.Process(values1);
filter.Reset();
std::vector<float> values2(100, 1.f);
filter.Process(values2);
for (size_t k = 0; k < values1.size(); ++k) {
EXPECT_EQ(values1[k], values2[k]);
}
}
// Verifies that the filter is able to produce a transparent effect with no
// impact on the data when the proper coefficients are applied. The test also
// verifies that the non-in-place Process API call works as intended.
TEST(CascadedBiquadFilter, TransparentConfiguration) {
const std::vector<float> input = CreateInputWithIncreasingValues(1000);
std::vector<float> output(input.size());
CascadedBiQuadFilter filter(kTransparentCoefficients, 1);
filter.Process(input, output);
EXPECT_EQ(input, output);
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check of the lengths for the input and output works for the
// non-in-place call.
TEST(CascadedBiquadFilterDeathTest, InputSizeCheckVerification) {
const std::vector<float> input = CreateInputWithIncreasingValues(10);
std::vector<float> output(input.size() - 1);
CascadedBiQuadFilter filter(kTransparentCoefficients, 1);
EXPECT_DEATH(filter.Process(input, output), "");
}
#endif
// Verifies the conversion from zero, pole, gain to filter coefficients for
// lowpass filter.
TEST(CascadedBiquadFilter, BiQuadParamLowPass) {
CascadedBiQuadFilter::BiQuadParam param(
{-1.0f, 0.0f}, {0.23146901f, 0.39514232f}, 0.1866943331163784f);
CascadedBiQuadFilter::BiQuad filter(param);
const float epsilon = 1e-6f;
EXPECT_NEAR(filter.coefficients.b[0], 0.18669433f, epsilon);
EXPECT_NEAR(filter.coefficients.b[1], 0.37338867f, epsilon);
EXPECT_NEAR(filter.coefficients.b[2], 0.18669433f, epsilon);
EXPECT_NEAR(filter.coefficients.a[0], -0.46293803f, epsilon);
EXPECT_NEAR(filter.coefficients.a[1], 0.20971536f, epsilon);
}
// Verifies the conversion from zero, pole, gain to filter coefficients for
// highpass filter.
TEST(CascadedBiquadFilter, BiQuadParamHighPass) {
CascadedBiQuadFilter::BiQuadParam param(
{1.0f, 0.0f}, {0.72712179f, 0.21296904f}, 0.75707637533388494f);
CascadedBiQuadFilter::BiQuad filter(param);
const float epsilon = 1e-6f;
EXPECT_NEAR(filter.coefficients.b[0], 0.75707638f, epsilon);
EXPECT_NEAR(filter.coefficients.b[1], -1.51415275f, epsilon);
EXPECT_NEAR(filter.coefficients.b[2], 0.75707638f, epsilon);
EXPECT_NEAR(filter.coefficients.a[0], -1.45424359f, epsilon);
EXPECT_NEAR(filter.coefficients.a[1], 0.57406192f, epsilon);
}
// Verifies the conversion from zero, pole, gain to filter coefficients for
// bandpass filter.
TEST(CascadedBiquadFilter, BiQuadParamBandPass) {
CascadedBiQuadFilter::BiQuadParam param(
{1.0f, 0.0f}, {1.11022302e-16f, 0.71381051f}, 0.2452372752527856f, true);
CascadedBiQuadFilter::BiQuad filter(param);
const float epsilon = 1e-6f;
EXPECT_NEAR(filter.coefficients.b[0], 0.24523728f, epsilon);
EXPECT_NEAR(filter.coefficients.b[1], 0.f, epsilon);
EXPECT_NEAR(filter.coefficients.b[2], -0.24523728f, epsilon);
EXPECT_NEAR(filter.coefficients.a[0], -2.22044605e-16f, epsilon);
EXPECT_NEAR(filter.coefficients.a[1], 5.09525449e-01f, epsilon);
}
} // namespace webrtc